Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics I

Studia Logica 64 (1):93-132 (2000)
  Copy   BIBTEX

Abstract

The main goal of this paper is to explain the link between the algebraic and the Kripke-style models for certain classes of propositional logics. We start by presenting a Priestley-type duality for distributive lattices endowed with a general class of well-behaved operators. We then show that finitely-generated varieties of distributive lattices with operators are closed under canonical embedding algebras. The results are used in the second part of the paper to construct topological and non-topological Kripke-style models for logics that are sound and complete with respect to varieties of distributive lattices with operators in the above-mentioned classes.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 104,556

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
88 (#253,751)

6 months
4 (#1,005,389)

Historical graph of downloads
How can I increase my downloads?