Using d-separation to calculate zero partial correlations in linear models with correlated errors

Abstract

It has been shown in Spirtes(1995) that X and Y are d-separated given Z in a directed graph associated with a recursive or non-recursive linear model without correlated errors if and only if the model entails that ρXY.Z = 0. This result cannot be directly applied to a linear model with correlated errors, however, because the standard graphical representation of a linear model with correlated errors is not a directed graph. The main result of this paper is to show how to associate a directed graph with a linear model L with correlated errors, and then use d-separation in the associated directed graph to determine whether L entails that a particular partial correlation is zero.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
76 (#298,360)

6 months
5 (#853,286)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Peter Spirtes
Carnegie Mellon University
Richard Scheines
Carnegie Mellon University
Clark Glymour
Carnegie Mellon University

Citations of this work

Add more citations

References found in this work

No references found.

Add more references