Implicational quantum logic

Axiomathes 32 (2):473-483 (2022)
  Copy   BIBTEX

Abstract

A non-classical subsystem of orthomodular quantum logic is proposed. This system employs two basic operations: the Sasaki hook as implication and the _and-then_ operation as conjunction. These operations successfully satisfy modus ponens and the deduction theorem. In other words, they form an adjunction in terms of category theory. Two types of semantics are presented for this logic: one algebraic and one physical. The algebraic semantics deals with orthomodular lattices, as in traditional quantum logic. The physical semantics is given as a procedure for deriving a final segment of a series of yes-no experiments.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2022-01-21

Downloads
57 (#415,622)

6 months
11 (#332,542)

Historical graph of downloads
How can I increase my downloads?