Assembled Bias: Beyond Transparent Algorithmic Bias

Minds and Machines 32 (3):533-562 (2022)
  Copy   BIBTEX

Abstract

In this paper we make the case for the emergence of novel kind of bias with the use of algorithmic decision-making systems. We argue that the distinctive generative process of feature creation, characteristic of machine learning (ML), contorts feature parameters in ways that can lead to emerging feature spaces that encode novel algorithmic bias involving already marginalized groups. We term this bias _assembled bias._ Moreover, assembled biases are distinct from the much-discussed algorithmic bias, both in source (training data versus feature creation) and in content (mimics of extant societal bias versus reconfigured categories). As such, this problem is distinct from issues arising from bias-encoding training feature sets or proxy features. Assembled bias is not epistemically transparent in source or content. Hence, when these ML models are used as a basis for decision-making in social contexts, algorithmic fairness concerns are compounded.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On algorithmic fairness in medical practice.Thomas Grote & Geoff Keeling - 2022 - Cambridge Quarterly of Healthcare Ethics 31 (1):83-94.
Disambiguating Algorithmic Bias: From Neutrality to Justice.Elizabeth Edenberg & Alexandra Wood - 2023 - In Francesca Rossi, Sanmay Das, Jenny Davis, Kay Firth-Butterfield & Alex John, AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery. pp. 691-704.
Algorithmic Political Bias in Artificial Intelligence Systems.Uwe Peters - 2022 - Philosophy and Technology 35 (2):1-23.

Analytics

Added to PP
2022-06-18

Downloads
93 (#241,978)

6 months
19 (#161,561)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Robyn Waller
University of Sussex

Citations of this work

No citations found.

Add more citations