A Genealogical Approach to Algorithmic Bias

Minds and Machines 34 (2):1-17 (2024)
  Copy   BIBTEX

Abstract

The Fairness, Accountability, and Transparency (FAccT) literature tends to focus on bias as a problem that requires ex post solutions (e.g. fairness metrics), rather than addressing the underlying social and technical conditions that (re)produce it. In this article, we propose a complementary strategy that uses genealogy as a constructive, epistemic critique to explain algorithmic bias in terms of the conditions that enable it. We focus on XAI feature attributions (Shapley values) and counterfactual approaches as potential tools to gauge these conditions and offer two main contributions. One is constructive: we develop a theoretical framework to classify these approaches according to their relevance for bias as evidence of social disparities. We draw on Pearl’s ladder of causation (Causality: models, reasoning, and inference. Cambridge University Press, Cambridge, 2000, Causality, 2nd edn. Cambridge University Press, Cambridge, 2009. doi:10.1017/CBO9780511803161) to order these XAI approaches concerning their ability to answer fairness-relevant questions and identify fairness-relevant solutions. The other contribution is critical: we evaluate these approaches in terms of their assumptions about the role of protected characteristics in discriminatory outcomes. We achieve this by building on Kohler-Hausmann’s (Northwest Univ Law Rev 113(5):1163–1227, 2019) constructivist theory of discrimination. We derive three recommendations for XAI practitioners to develop and AI policymakers to regulate tools that address algorithmic bias in its conditions and hence mitigate its future occurrence.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On algorithmic fairness in medical practice.Thomas Grote & Geoff Keeling - 2022 - Cambridge Quarterly of Healthcare Ethics 31 (1):83-94.
Disambiguating Algorithmic Bias: From Neutrality to Justice.Elizabeth Edenberg & Alexandra Wood - 2023 - In Francesca Rossi, Sanmay Das, Jenny Davis, Kay Firth-Butterfield & Alex John (eds.), AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery. pp. 691-704.
An Epistemic Lens on Algorithmic Fairness.Elizabeth Edenberg & Alexandra Wood - 2023 - Eaamo '23: Proceedings of the 3Rd Acm Conference on Equity and Access in Algorithms, Mechanisms, and Optimization.

Analytics

Added to PP
2024-05-03

Downloads
59 (#361,293)

6 months
18 (#160,410)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

David Watson
University College London
Luciano Floridi
Yale University

Citations of this work

No citations found.

Add more citations