Counting finite models

Journal of Symbolic Logic 62 (3):925-949 (1997)
  Copy   BIBTEX

Abstract

Let φ be a monadic second order sentence about a finite structure from a class K which is closed under disjoint unions and has components. Compton has conjectured that if the number of n element structures has appropriate asymptotics, then unlabelled (labelled) asymptotic probabilities ν(φ) (μ(φ) respectively) for φ always exist. By applying generating series methods to count finite models, and a tailor made Tauberian lemma, this conjecture is proved under a mild additional condition on the asymptotics of the number of single component K-structures. Prominent among examples covered, are structures consisting of a single unary function (or partial function) and a fixed number of unary predicates

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,169

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
41 (#610,039)

6 months
11 (#332,542)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Finite Model Theory.Heinz-Dieter Ebbinghaus & Jörg Flum - 2001 - Studia Logica 69 (3):449-449.
Finite Model Theory.Heinz-Dieter Ebbinghaus & Torg Flum - 1997 - Studia Logica 58 (2):332-335.

Add more references