Results for ' Cardinal of the real numbers set'

971 found
Order:
  1.  42
    Some remarks on category of the real line.Kyriakos Keremedis - 1999 - Archive for Mathematical Logic 38 (3):153-162.
    We find a characterization of the covering number $cov({\mathbb R})$ , of the real line in terms of trees. We also show that the cofinality of $cov({\mathbb R})$ is greater than or equal to ${\mathfrak n}_\lambda$ for every $\lambda \in cov({\mathbb R}),$ where $\mathfrak n_\lambda \geq add({\mathcal L})$ ( $add( {\mathcal L})$ is the additivity number of the ideal of all Lebesgue measure zero sets) is the least cardinal number k for which the statement: $(\exists{\mathcal G}\in [^\omega \omega (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  31
    Representations of the real numbers and of the open subsets of the set of real numbers.Klaus Weihrauch & Christoph Kreitz - 1987 - Annals of Pure and Applied Logic 35 (C):247-260.
  3.  20
    The Combinatorics and Absoluteness of Definable Sets of Real Numbers.Zach Norwood - 2022 - Bulletin of Symbolic Logic 28 (2):263-264.
    This thesis divides naturally into two parts, each concerned with the extent to which the theory of $L$ can be changed by forcing.The first part focuses primarily on applying generic-absoluteness principles to how that definable sets of reals enjoy regularity properties. The work in Part I is joint with Itay Neeman and is adapted from our paper Happy and mad families in $L$, JSL, 2018. The project was motivated by questions about mad families, maximal families of infinite subsets of $\omega (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4. Real Numbers and Set theory – Extending the Neo-Fregean Programme Beyond Arithmetic.Bob Hale - 2005 - Synthese 147 (1):21-41.
    It is known that Hume’s Principle, adjoined to a suitable formulation of second-order logic, gives a theory which is almost certainly consistent4 and suffices for arithmetic in the sense that it yields the Dedekind-Peano axioms as theorems. While Hume’s Principle cannot be taken as a definition in any strict sense requiring that it provide for the eliminative paraphrase of its definiendum in every admissible type of occurrence, we hold that it can be viewed as an implicit definition of a sortal (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5.  54
    Combinatorial properties of filters and open covers for sets of real numbers.Claude Laflamme & Marion Scheepers - 1999 - Journal of Symbolic Logic 64 (3):1243-1260.
    We analyze combinatorial properties of open covers of sets of real numbers by using filters on the natural numbers. In fact, the goal of this paper is to characterize known properties related to ω-covers of the space in terms of combinatorial properties of filters associated with these ω-covers. As an example, we show that all finite powers of a set R of real numbers have the covering property of Menger if, and only if, each filter (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  6.  44
    Aspects of the Real Numbers: Putnam, Wittgenstein, and Nonextensionalism.Juliet Floyd - 2020 - The Monist 103 (4):427-441.
    I defend Putnam’s modal structuralist view of mathematics but reject his claims that Wittgenstein’s remarks on Dedekind, Cantor, and set theory are verificationist. Putnam’s “realistic realism” showcases the plasticity of our “fitting” words to the world. The applications of this—in philosophy of language, mind, logic, and philosophy of computation—are robust. I defend Wittgenstein’s nonextensionalist understanding of the real numbers, showing how it fits Putnam’s view. Nonextensionalism and extensionalism about the real numbers are mathematically, philosophically, and logically (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  22
    The number of translates of a closed nowhere dense set required to cover a Polish group.Arnold W. Miller & Juris Steprāns - 2006 - Annals of Pure and Applied Logic 140 (1):52-59.
    For a Polish group let be the minimal number of translates of a fixed closed nowhere dense subset of required to cover . For many locally compact this cardinal is known to be consistently larger than which is the smallest cardinality of a covering of the real line by meagre sets. It is shown that for several non-locally compact groups . For example the equality holds for the group of permutations of the integers, the additive group of a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  35
    The abstract type of the real numbers.Fernando Ferreira - 2021 - Archive for Mathematical Logic 60 (7):1005-1017.
    In finite type arithmetic, the real numbers are represented by rapidly converging Cauchy sequences of rational numbers. Ulrich Kohlenbach introduced abstract types for certain structures such as metric spaces, normed spaces, Hilbert spaces, etc. With these types, the elements of the spaces are given directly, not through the mediation of a representation. However, these abstract spaces presuppose the real numbers. In this paper, we show how to set up an abstract type for the real (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  49
    Cardinal invariants of the continuum and combinatorics on uncountable cardinals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 144 (1-3):43-72.
    We explore the connection between combinatorial principles on uncountable cardinals, like stick and club, on the one hand, and the combinatorics of sets of reals and, in particular, cardinal invariants of the continuum, on the other hand. For example, we prove that additivity of measure implies that Martin’s axiom holds for any Cohen algebra. We construct a model in which club holds, yet the covering number of the null ideal is large. We show that for uncountable cardinals κ≤λ and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10.  36
    Generic Vopěnka cardinals and models of ZF with few $$\aleph _1$$ ℵ 1 -Suslin sets.Trevor M. Wilson - 2019 - Archive for Mathematical Logic 58 (7-8):841-856.
    We define a generic Vopěnka cardinal to be an inaccessible cardinal \ such that for every first-order language \ of cardinality less than \ and every set \ of \-structures, if \ and every structure in \ has cardinality less than \, then an elementary embedding between two structures in \ exists in some generic extension of V. We investigate connections between generic Vopěnka cardinals in models of ZFC and the number and complexity of \-Suslin sets of reals (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  52
    Unions of rectifiable curves in euclidean space and the covering number of the meagre ideal.Juris Steprans - 1999 - Journal of Symbolic Logic 64 (2):701-726.
    To any metric space it is possible to associate the cardinal invariant corresponding to the least number of rectifiable curves in the space whose union is not meagre. It is shown that this invariant can vary with the metric space considered, even when restricted to the class of convex subspaces of separable Banach spaces. As a corollary it is obtained that it is consistent with set theory that any set of reals of size ℵ 1 is meagre yet there (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  2
    Separating Many Localisation Cardinals on the Generalised Baire Space.Tristan van der Vlugt - 2024 - Journal of Symbolic Logic 89 (3):1212-1231.
    Given a cofinal cardinal function $h\in {}^{\kappa }\kappa $ for $\kappa $ inaccessible, we consider the dominating h-localisation number, that is, the least cardinality of a dominating set of h-slaloms such that every $\kappa $ -real is localised by a slalom in the dominating set. It was proved in [3] that the dominating localisation numbers can be consistently different for two functions h (the identity function and the power function). We will construct a $\kappa ^+$ -sized family (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  18
    From a well-ordering of the reals it is easy (by a diagonal argument) to produce a non-determined set of reals. However, large cardinal axioms imply that all sets of reals in L (R), and more, are determined. See, for example, Neeman's papers Optimalproofs of determinacy.Andrzej S. Murawski - 1995 - Bulletin of Symbolic Logic 1:327-339.
    Direct download  
     
    Export citation  
     
    Bookmark  
  14.  19
    Lebesgue Measure Zero Modulo Ideals on the Natural Numbers.Viera Gavalová & Diego A. Mejía - forthcoming - Journal of Symbolic Logic:1-31.
    We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $ -ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15. WEIHRAUCH, K. and KREITZ, C., Representations of the real numbers and of the open subsets of the set of real numbers WILKIE, AJ and PARIS, JB, On the scheme of induction for bounded arithmetic formulas. [REVIEW]Las Kirby & R. Diaconescu - 1987 - Annals of Pure and Applied Logic 35:303.
  16.  25
    Computability of Real Numbers by Using a Given Class of Functions in the Set of the Natural Numbers.Dimiter Skordev - 2002 - Mathematical Logic Quarterly 48 (S1):91-106.
    Given a class ℱ oft otal functions in the set oft he natural numbers, one could study the real numbers that have arbitrarily close rational approximations explicitly expressible by means of functions from ℱ. We do this for classes ℱsatisfying certain closedness conditions. The conditions in question are satisfied for example by the class of all recursive functions, by the class of the primitive recursive ones, by any of the Grzegorczyk classes ℰnwith n ≥ 2, by the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  27
    Some Remarks on Real Numbers Induced by First-Order Spectra.Sune Kristian Jakobsen & Jakob Grue Simonsen - 2016 - Notre Dame Journal of Formal Logic 57 (3):355-368.
    The spectrum of a first-order sentence is the set of natural numbers occurring as the cardinalities of finite models of the sentence. In a recent survey, Durand et al. introduce a new class of real numbers, the spectral reals, induced by spectra and pose two open problems associated to this class. In the present note, we answer these open problems as well as other open problems from an earlier, unpublished version of the survey. Specifically, we prove that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  18.  88
    Sets constructible from sequences of ultrafilters.William J. Mitchell - 1974 - Journal of Symbolic Logic 39 (1):57-66.
    In [4], Kunen used iterated ultrapowers to show that ifUis a normalκ-complete nontrivial ultrafilter on a cardinalκthenL[U], the class of sets constructive fromU, has only the ultrafilterU∩L[U] and this ultrafilter depends only onκ. In this paper we extend Kunen's methods to arbitrary sequencesUof ultrafilters and obtain generalizations of these results. In particular we answer Problem 1 of Kunen and Paris [5] which asks whether the number of ultrafilters onκcan be intermediate between 1 and 22κ. If there is a normalκ-complete ultrafilterUonκsuch (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  19.  26
    Universally Baire sets and definable well-orderings of the reals.S. Y. D. Friedman & Ralf Schindler - 2003 - Journal of Symbolic Logic 68 (4):1065-1081.
    Let n ≥ 3 be an integer. We show that it is consistent that every σ1n-set of reals is universally Baire yet there is a projective well-ordering of the reals. The proof uses “David’s trick” in the presence of inner models with strong cardinals.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  79
    Universally baire sets and definable well-orderings of the reals.Sy D. Friedman & Ralf Schindler - 2003 - Journal of Symbolic Logic 68 (4):1065-1081.
    Let n ≥ 3 be an integer. We show that it is consistent (relative to the consistency of n - 2 strong cardinals) that every $\Sigma_n^1-set$ of reals is universally Baire yet there is a (lightface) projective well-ordering of the reals. The proof uses "David's trick" in the presence of inner models with strong cardinals.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  21.  18
    A small ultrafilter number at smaller cardinals.Dilip Raghavan & Saharon Shelah - 2020 - Archive for Mathematical Logic 59 (3-4):325-334.
    It is proved to be consistent relative to a measurable cardinal that there is a uniform ultrafilter on the real numbers which is generated by fewer than the maximum possible number of sets. It is also shown to be consistent relative to a supercompact cardinal that there is a uniform ultrafilter on \ which is generated by fewer than \ sets.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Wittgenstein and the Real Numbers.Daesuk Han - 2010 - History and Philosophy of Logic 31 (3):219-245.
    When it comes to Wittgenstein's philosophy of mathematics, even sympathetic admirers are cowed into submission by the many criticisms of influential authors in that field. They say something to the effect that Wittgenstein does not know enough about or have enough respect for mathematics, to take him as a serious philosopher of mathematics. They claim to catch Wittgenstein pooh-poohing the modern set-theoretic extensional conception of a real number. This article, however, will show that Wittgenstein's criticism is well grounded. A (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23.  30
    Second order arithmetic as the model companion of set theory.Giorgio Venturi & Matteo Viale - 2023 - Archive for Mathematical Logic 62 (1):29-53.
    This is an introductory paper to a series of results linking generic absoluteness results for second and third order number theory to the model theoretic notion of model companionship. Specifically we develop here a general framework linking Woodin’s generic absoluteness results for second order number theory and the theory of universally Baire sets to model companionship and show that (with the required care in details) a $$\Pi _2$$ -property formalized in an appropriate language for second order number theory is forcible (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  39
    Aquiles, la Tortuga y el infinito.José Enrique García Pascua - 2003 - Revista de Filosofía (Madrid) 28 (2):215-236.
    This paper shows an analysis of some found solutions for the famous aporia of the race between Achilles and the Tortoise. As an introduction, we present the mechanical solution, to establish that it is not in the field of matters of fact where you can resolve a purely rational problem like the one raised by Zeno of Elea. And so, the main part of the article is dedicated to the mathematical solutions, which face the problem under the point of view (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  25.  18
    (1 other version)On the Cardinality of\ sum_2^ 1 Sets of Reals.Robert M. Solovay - 1969 - In Kurt Gödel, Jack J. Bulloff, Thomas C. Holyoke & Samuel Wilfred Hahn (eds.), Foundations of mathematics. New York,: Springer. pp. 58--73.
  26.  13
    The descriptive complexity of the set of Poisson generic numbers.Verónica Becher, Stephen Jackson, Dominik Kwietniak & Bill Mance - forthcoming - Journal of Mathematical Logic.
    Let [Formula: see text] be an integer. We show that the set of real numbers that are Poisson generic in base [Formula: see text] is [Formula: see text]-complete in the Borel hierarchy of subsets of the real line. Furthermore, the set of real numbers that are Borel normal in base [Formula: see text] and not Poisson generic in base [Formula: see text] is complete for the class given by the differences between [Formula: see text] sets. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27. Axioms of symmetry: Throwing darts at the real number line.Chris Freiling - 1986 - Journal of Symbolic Logic 51 (1):190-200.
    We will give a simple philosophical "proof" of the negation of Cantor's continuum hypothesis (CH). (A formal proof for or against CH from the axioms of ZFC is impossible; see Cohen [1].) We will assume the axioms of ZFC together with intuitively clear axioms which are based on some intuition of Stuart Davidson and an old theorem of Sierpinski and are justified by the symmetry in a thought experiment throwing darts at the real number line. We will in fact (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  28. Predicativity and Structuralism in Dedekind’s Construction of the Reals.Audrey Yap - 2009 - Erkenntnis 71 (2):157-173.
    It is a commonly held view that Dedekind's construction of the real numbers is impredicative. This naturally raises the question of whether this impredicativity is justified by some kind of Platonism about sets. But when we look more closely at Dedekind's philosophical views, his ontology does not look Platonist at all. So how is his construction justified? There are two aspects of the solution: one is to look more closely at his methodological views, and in particular, the places (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  29.  62
    The Idea of an Exact Number: Children's Understanding of Cardinality and Equinumerosity.Barbara W. Sarnecka & Charles E. Wright - 2013 - Cognitive Science 37 (8):1493-1506.
    Understanding what numbers are means knowing several things. It means knowing how counting relates to numbers (called the cardinal principle or cardinality); it means knowing that each number is generated by adding one to the previous number (called the successor function or succession), and it means knowing that all and only sets whose members can be placed in one-to-one correspondence have the same number of items (called exact equality or equinumerosity). A previous study (Sarnecka & Carey, 2008) (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  30.  13
    Sealing of the universally baire sets.Grigor Sargsyan & Nam Trang - 2021 - Bulletin of Symbolic Logic 27 (3):254-266.
    A set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property. ${\sf Sealing}$ is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by set forcings. The ${\sf Largest\ Suslin\ Axiom}$ is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable surjections. Let ${\sf LSA}$ - (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  9
    Partitioning the Real Line Into Borel Sets.Will Brian - 2024 - Journal of Symbolic Logic 89 (2):549-568.
    For which infinite cardinals $\kappa $ is there a partition of the real line ${\mathbb R}$ into precisely $\kappa $ Borel sets? Work of Lusin, Souslin, and Hausdorff shows that ${\mathbb R}$ can be partitioned into $\aleph _1$ Borel sets. But other than this, we show that the spectrum of possible sizes of partitions of ${\mathbb R}$ into Borel sets can be fairly arbitrary. For example, given any $A \subseteq \omega $ with $0,1 \in A$, there is a forcing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  15
    Every Countable Model of Arithmetic or Set Theory has a Pointwise-Definable End Extension.Joel David Hamkins - forthcoming - Kriterion – Journal of Philosophy.
    According to the math tea argument, there must be real numbers that we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions. And yet, the existence of pointwise-definable models of set theory, in which every individual is definable without parameters, challenges this conclusion. In this article, I introduce a flexible new method for constructing pointwise-definable models of arithmetic and set theory, showing furthermore that every countable model of Zermelo-Fraenkel ZF (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  13
    Forcing theory and combinatorics of the real line.Miguel Antonio Cardona-Montoya - 2023 - Bulletin of Symbolic Logic 29 (2):299-300.
    The main purpose of this dissertation is to apply and develop new forcing techniques to obtain models where several cardinal characteristics are pairwise different as well as force many (even more, continuum many) different values of cardinal characteristics that are parametrized by reals. In particular, we look at cardinal characteristics associated with strong measure zero, Yorioka ideals, and localization and anti-localization cardinals.In this thesis we introduce the property “F-linked” of subsets of posets for a given free filter (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  22
    Connectedness in Structures on the Real Numbers: O-Minimality and Undecidability.Alfred Dolich, Chris Miller, Alex Savatovsky & Athipat Thamrongthanyalak - 2022 - Journal of Symbolic Logic 87 (3):1243-1259.
    We initiate an investigation of structures on the set of real numbers having the property that path components of definable sets are definable. All o-minimal structures on $(\mathbb {R},<)$ have the property, as do all expansions of $(\mathbb {R},+,\cdot,\mathbb {N})$. Our main analytic-geometric result is that any such expansion of $(\mathbb {R},<,+)$ by Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of $(\mathbb N,+,\cdot )$. We also show that any given expansion (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. On the cardinality of 1\ sets of reals'.R. M. Solovay - 1969 - In Kurt Gödel, Jack J. Bulloff, Thomas C. Holyoke & Samuel Wilfred Hahn (eds.), Foundations of mathematics. New York,: Springer. pp. 58--73.
     
    Export citation  
     
    Bookmark   3 citations  
  36.  30
    Parameterized partition relations on the real numbers.Joan Bagaria & Carlos A. Di Prisco - 2009 - Archive for Mathematical Logic 48 (2):201-226.
    We consider several kinds of partition relations on the set ${\mathbb{R}}$ of real numbers and its powers, as well as their parameterizations with the set ${[\mathbb{N}]^{\mathbb{N}}}$ of all infinite sets of natural numbers, and show that they hold in some models of set theory. The proofs use generic absoluteness, that is, absoluteness under the required forcing extensions. We show that Solovay models are absolute under those forcing extensions, which yields, for instance, that in these models for every (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  35
    On the ordered Dedekind real numbers in toposes.Marcelo E. Coniglio & Luís A. Sbardellini - 2015 - In Edward H. Haeusler, Wagner Sanz & Bruno Lopes (eds.), Why is this a Proof? Festschrift for Luiz Carlos Pereira. College Publications. pp. 87-105.
    In 1996, W. Veldman and F. Waaldijk present a constructive (intuitionistic) proof for the homogeneity of the ordered structure of the Cauchy real numbers, and so this result holds in any topos with natural number object. However, it is well known that the real numbers objects obtained by the traditional constructions of Cauchy sequences and Dedekind cuts are not necessarily isomorphic in an arbitrary topos with natural numbers object. Consequently, Veldman and Waaldijk's result does not (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  17
    Surjectively rigid chains.Mayra Montalvo-Ballesteros & John K. Truss - 2020 - Mathematical Logic Quarterly 66 (4):466-478.
    We study rigidity properties of linearly ordered sets (chains) under automorphisms, embeddings, epimorphisms, and endomorphisms. We focus on two main cases: dense subchains of the real numbers, and uncountable dense chains of higher regular cardinalities. We also give a Fraenkel‐Mostowski model which illustrates the role of the axiom of choice in one of the key proofs.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. How we can apply the mathematics on the world?A. Ule - 2002 - Filozofski Vestnik 23 (1):25-51.
    In the article are presented the main philosophical explanations of the application of mathematics on the real world (Plato, Aristotle, rationalists, empiricists, Kant, Frege, Husserl, Carnap etc.). They indicate some typical triangular structure of relationships where the mathematical structures somehow correspond to the forms of reality, and thus are possible though something third what bound them. The attempts to solve the question of the application of mathematics by the dispensability of mathematics (e.g. Field) do not success because they do (...)
     
    Export citation  
     
    Bookmark  
  40. The descriptive complexity of the set of Poisson generic numbers.Verónica Becher, Stephen Jackson, Dominik Kwietniak & Bill Mance - forthcoming - Journal of Mathematical Logic.
    Journal of Mathematical Logic, Ahead of Print. Let [math] be an integer. We show that the set of real numbers that are Poisson generic in base [math] is [math]-complete in the Borel hierarchy of subsets of the real line. Furthermore, the set of real numbers that are Borel normal in base [math] and not Poisson generic in base [math] is complete for the class given by the differences between [math] sets. We also show that the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  40
    Cichoń’s diagram, regularity properties and $${\varvec{\Delta}^1_3}$$ Δ 3 1 sets of reals.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (5-6):695-729.
    We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the Δ31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_3}$$\end{document} level of the projective hieararchy. For Δ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_2}$$\end{document} and Σ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Sigma}^1_2}$$\end{document} sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  37
    On Σ‐definability without equality over the real numbers.Andrei S. Morozov & Margarita V. Korovina - 2008 - Mathematical Logic Quarterly 54 (5):535-544.
    In [5] it has been shown that for first-order definability over the reals there exists an effective procedure which by a finite formula with equality defining an open set produces a finite formula without equality that defines the same set. In this paper we prove that there exists no such procedure for Σ-definability over the reals. We also show that there exists even no uniform effective transformation of the definitions of Σ-definable sets into new definitions of Σ-definable sets in such (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  73
    Notes on a formalization of the prime number theorem.Jeremy Avigad - unknown
    On September 6, 2004, using the Isabelle proof assistant, I verified the following statement: (%x. pi x * ln (real x) / (real x)) ----> 1 The system thereby confirmed that the prime number theorem is a consequence of the axioms of higher-order logic together with an axiom asserting the existence of an infinite set. All told, our number theory session, including the proof of the prime number theorem and supporting libraries, constitutes 673 pages of proof scripts, or (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  44.  26
    Computing strength of structures related to the field of real numbers.Gregory Igusa, Julia F. Knight & Noah David Schweber - 2017 - Journal of Symbolic Logic 82 (1):137-150.
    In [8], the third author defined a reducibility$\le _w^{\rm{*}}$that lets us compare the computing power of structures of any cardinality. In [6], the first two authors showed that the ordered field of reals${\cal R}$lies strictly above certain related structures. In the present paper, we show that$\left \equiv _w^{\rm{*}}{\cal R}$. More generally, for the weak-looking structure${\cal R}$ℚconsisting of the real numbers with just the ordering and constants naming the rationals, allo-minimal expansions of${\cal R}$ℚare equivalent to${\cal R}$. Using this, we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  17
    The consistency strength of the perfect set property for universally baire sets of reals.Ralf Schindler & Trevor M. Wilson - 2022 - Journal of Symbolic Logic 87 (2):508-526.
    We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness. These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$, where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  43
    Introduction to mathematics: number, space, and structure.Scott A. Taylor - 2023 - Providence, Rhode Island: American Mathematical Society.
    This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  29
    A Real Number Structure that is Effectively Categorical.Peter Hertling - 1999 - Mathematical Logic Quarterly 45 (2):147-182.
    On countable structures computability is usually introduced via numberings. For uncountable structures whose cardinality does not exceed the cardinality of the continuum the same can be done via representations. Which representations are appropriate for doing real number computations? We show that with respect to computable equivalence there is one and only one equivalence class of representations of the real numbers which make the basic operations and the infinitary normed limit operator computable. This characterizes the real (...) in terms of the theory of effective algebras or computable structures, and is reflected by observations made in real number computer arithmetic. Demanding computability of the normed limit operator turns out to be essential: the basic operations without the normed limit operator can be made computable by more than one class of representations. We also give further evidence for the well-known non-appropriateness of the representation to some base b by proving that strictly less functions are computable with respect to these representations than with respect to a standard representation of the real numbers. Furthermore we consider basic constructions of representations and the countable substructure consisting of the computable elements of a represented, possibly uncountable structure. For countable structures we compare effectivity with respect to a numbering and effectivity with respect to a representation. Special attention is paid to the countable structure of the computable real numbers. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  48.  12
    Decomposing the real line into Borel sets closed under addition.Márton Elekes & Tamás Keleti - 2015 - Mathematical Logic Quarterly 61 (6):466-473.
    We consider decompositions of the real line into pairwise disjoint Borel pieces so that each piece is closed under addition. How many pieces can there be? We prove among others that the number of pieces is either at most 3 or uncountable, and we show that it is undecidable in and even in the theory if the number of pieces can be uncountable but less than the continuum. We also investigate various versions: what happens if we drop the Borelness (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49. Elements of a phenomenological justification of logical principles, including an appendix with mathematical doubts concerning some proofs of Cantor on the transfiniteness of the set of real numbers.Dieter Lohmar - 2002 - Philosophia Mathematica 10 (2):227-250.
    There are two main objections against epistemological foundation of logical principles: 1. Every argument for them must necessarily make use of them. 2. Logical principles cannot be abstracted from experience because they imply elements of meaning that exceed in principle our finite experience (like universality & necessity). In opposition to these objections I argue for Husserl's thesis that logic needs a theory of experience as a foundation. To show the practicability of his attempt I argue that he is able to (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  18
    Sets of real numbers closed under Turing equivalence: applications to fields, orders and automorphisms.Iván Ongay-Valverde - 2023 - Archive for Mathematical Logic 62 (5):843-869.
    In the first half of this paper, we study the way that sets of real numbers closed under Turing equivalence sit inside the real line from the perspective of algebra, measure and orders. Afterwards, we combine the results from our study of these sets as orders with a classical construction from Avraham to obtain a restriction about how non trivial automorphism of the Turing degrees (if they exist) interact with 1-generic degrees.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 971