Results for ' Countably Determined Set'

978 found
Order:
  1.  40
    Some Ramsey-type theorems for countably determined sets.Josef Mlček & Pavol Zlatoš - 2002 - Archive for Mathematical Logic 41 (7):619-630.
    Let X be an infinite internal set in an ω1-saturated nonstandard universe. Then for any coloring of [X] k , such that the equivalence E of having the same color is countably determined and there is no infinite internal subset of [X] k with all its elements of different colors (i.e., E is condensating on X), there exists an infinite internal set Z⊆X such that all the sets in [Z] k have the same color. This Ramsey-type result is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  51
    Existence of some sparse sets of nonstandard natural numbers.Renling Jin - 2001 - Journal of Symbolic Logic 66 (2):959-973.
    Answers are given to two questions concerning the existence of some sparse subsets of $\mathscr{H} = \{0, 1,..., H - 1\} \subseteq * \mathbb{N}$ , where H is a hyperfinite integer. In § 1, we answer a question of Kanovei by showing that for a given cut U in H, there exists a countably determined set $X \subseteq \mathscr{H}$ which contains exactly one element in each U-monad, if and only if U = a · N for some $a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  3.  40
    U-Meager sets when the cofinality and the coinitiality of U are uncountable.Bosko Zivaljevic - 1991 - Journal of Symbolic Logic 56 (3):906-914.
    We prove that every countably determined set C is U-meager if and only if every internal subset A of C is U-meager, provided that the cofinality and coinitiality of the cut U are both uncountable. As a consequence we prove that for such cuts a countably determined set C which intersects every U-monad in at most countably many points is U-meager. That complements a similar result in [KL]. We also give some partial solutions to some (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  4.  67
    The model of set theory generated by countably many generic reals.Andreas Blass - 1981 - Journal of Symbolic Logic 46 (4):732-752.
    Adjoin, to a countable standard model M of Zermelo-Fraenkel set theory (ZF), a countable set A of independent Cohen generic reals. If one attempts to construct the model generated over M by these reals (not necessarily containing A as an element) as the intersection of all standard models that include M ∪ A, the resulting model fails to satisfy the power set axiom, although it does satisfy all the other ZF axioms. Thus, there is no smallest ZF model including M (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  51
    Sizes of Countable Sets.Kateřina Trlifajová - 2024 - Philosophia Mathematica 32 (1):82-114.
    The paper introduces the notion of size of countable sets, which preserves the Part-Whole Principle. The sizes of the natural and the rational numbers, their subsets, unions, and Cartesian products are algorithmically enumerable as sequences of natural numbers. The method is similar to that of Numerosity Theory, but in comparison it is motivated by Bolzano’s concept of infinite series, it is constructive because it does not use ultrafilters, and set sizes are uniquely determined. The results mostly agree, but some (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  54
    Most-intersection of countable sets.Ahmet Çevik & Selçuk Topal - 2021 - Journal of Applied Non-Classical Logics 31 (3-4):343-354.
    We introduce a novel set-intersection operator called ‘most-intersection’ based on the logical quantifier ‘most’, via natural density of countable sets, to be used in determining the majority chara...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  7.  73
    Descriptive set theory over hyperfinite sets.H. Jerome Keisler, Kenneth Kunen, Arnold Miller & Steven Leth - 1989 - Journal of Symbolic Logic 54 (4):1167-1180.
    The separation, uniformization, and other properties of the Borel and projective hierarchies over hyperfinite sets are investigated and compared to the corresponding properties in classical descriptive set theory. The techniques used in this investigation also provide some results about countably determined sets and functions, as well as an improvement of an earlier theorem of Kunen and Miller.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  8.  15
    On countably saturated linear orders and certain class of countably saturated graphs.Ziemowit Kostana - 2020 - Archive for Mathematical Logic 60 (1):189-209.
    The idea of this paper is to explore the existence of canonical countably saturated models for different classes of structures. It is well-known that, under CH, there exists a unique countably saturated linear order of cardinality \. We provide some examples of pairwise non-isomorphic countably saturated linear orders of cardinality \, under different set-theoretic assumptions. We give a new proof of the old theorem of Harzheim, that the class of countably saturated linear orders has a uniquely (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  31
    Index sets for ω‐languages.Douglas Czenzer & Jeffrey B. Remmel - 2003 - Mathematical Logic Quarterly 49 (1):22-33.
    An ω-language is a set of infinite sequences on a countable language, and corresponds to a set of real numbers in a natural way. Languages may be described by logical formulas in the arithmetical hierarchy and also may be described as the set of words accepted by some type of automata or Turing machine. Certain families of languages, such as the equation image languages, may enumerated as P0, P1, … and then an index set associated to a given property R (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  30
    How complicated is the set of stable models of a recursive logic program?W. Marek, A. Nerode & J. Remmel - 1992 - Annals of Pure and Applied Logic 56 (1-3):119-135.
    Gelfond and Lifschitz proposed the notion of a stable model of a logic program. We establish that the set of all stable models in a Herbrand universe of a recursive logic program is, up to recursive renaming, the set of all infinite paths of a recursive, countably branching tree, and conversely. As a consequence, the problem, given a recursive logic program, of determining whether it has at least one stable model, is Σ11-complete. Due to the equivalences established in the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  22
    (1 other version)On non‐determined ehrenfeucht‐fraïssé games and unstable theories.Tapani Hyttinen & T. Hyttinen - 1992 - Mathematical Logic Quarterly 38 (1):399-408.
    In this paper we prove under some set theoretical assumptions that if T is a countable unstable theory then there is a pair of models of T such that Ehrenfeucht-Fraïssé games between these models of large variety of lengths are non-determined.
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  58
    Louveau's theorem for the descriptive set theory of internal sets.Kenneth Schilling & Bosko Zivaljevic - 1997 - Journal of Symbolic Logic 62 (2):595-607.
    We give positive answers to two open questions from [15]. (1) For every set C countably determined over A, if C is Π 0 α (Σ 0 α ) then it must be Π 0 α (Σ 0 α ) over A, and (2) every Borel subset of the product of two internal sets X and Y all of whose vertical sections are Π 0 α (Σ 0 α ) can be represented as an intersection (union) of Borel (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  13.  36
    Determinate logic and the Axiom of Choice.J. P. Aguilera - 2020 - Annals of Pure and Applied Logic 171 (2):102745.
    Takeuti introduced an infinitary proof system for determinate logic and showed that for transitive models of Zermelo-Fraenkel set theory with the Axiom of Dependent Choice that contain all reals, the cut-elimination theorem is equivalent to the Axiom of Determinacy, and in particular contradicts the Axiom of Choice. We consider variants of Takeuti's theorem without assuming the failure of the Axiom of Choice. For instance, we show that if one removes atomic formulae of infinite arity from the language of Takeuti's proof (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  67
    The forth part of the back and forth map in countable homogeneous structures.S. J. Mcleish - 1997 - Journal of Symbolic Logic 62 (3):873-890.
    The model theoretic `back and forth' construction of isomorphisms and automorphisms is based on the proof by Cantor that the theory of dense linear orderings without endpoints is ℵ 0 -categorical. However, Cantor's method is slightly different and for many other structures it yields an injection which is not surjective. The purpose here is to examine Cantor's method (here called `going forth') and to determine when it works and when it fails. Partial answers to this question are found, extending those (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  15.  64
    The pure part of HYP(M).Mark Nadel & Jonathan Stavi - 1977 - Journal of Symbolic Logic 42 (1):33-46.
    Let M be a structure for a language L on a set M of urelements. HYP(M) is the least admissible set above M. In § 1 we show that pp(HYP(M)) [ = the collection of pure sets in HYP(M] is determined in a simple way by the ordinal α = ⚬(HYP(M)) and the $\mathscr{L}_{\propto\omega}$ theory of M up to quantifier rank α. In § 2 we consider the question of which pure countable admissible sets are of the form pp(HYP(M)) (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Maximal beable subalgebras of quantum-mechanical observables.Hans Halvorson & Rob Clifton - 1999 - International Journal of Theoretical Physics 38:2441-2484.
    The centerpiece of Jeffrey Bub's book Interpreting the Quantum World is a theorem (Bub and Clifton 1996) which correlates each member of a large class of no-collapse interpretations with some 'privileged observable'. In particular, the Bub-Clifton theorem determines the unique maximal sublattice L(R,e) of propositions such that (a) elements of L(R,e) can be simultaneously determinate in state e, (b) L(R,e) contains the spectral projections of the privileged observable R, and (c) L(R,e) is picked out by R and e alone. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  17.  29
    Computability in structures representing a Scott set.Alex M. McAllister - 2001 - Archive for Mathematical Logic 40 (3):147-165.
    Continuing work begun in [10], we utilize a notion of forcing for which the generic objects are structures and which allows us to determine whether these “generic” structures compute certain sets and enumerations. The forcing conditions are bounded complexity types which are consistent with a given theory and are elements of a given Scott set. These generic structures will “represent” this given Scott set, in the sense that the structure has a certain weak saturation property with respect to bounded complexity (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  58
    On the Modal Logic of Jeffrey Conditionalization.Zalán Gyenis - 2018 - Logica Universalis 12 (3-4):351-374.
    We continue the investigations initiated in the recent papers where Bayes logics have been introduced to study the general laws of Bayesian belief revision. In Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the prior on some evidence using the Bayes rule. In this paper we take the more general Jeffrey formula as a conditioning device and study the corresponding modal logics that we call Jeffrey logics, focusing mainly on the countable case. The containment relations among (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  19.  22
    Countable OD sets of reals belong to the ground model.Vladimir Kanovei & Vassily Lyubetsky - 2018 - Archive for Mathematical Logic 57 (3-4):285-298.
    It is true in the Cohen, Solovay-random, dominaning, and Sacks generic extension, that every countable ordinal-definable set of reals belongs to the ground universe. It is true in the Solovay collapse model that every non-empty OD countable set of sets of reals consists of \ elements.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20. The largest countable inductive set is a mouse set.Mitch Rudominer - 1999 - Journal of Symbolic Logic 64 (2):443-459.
    Let κ R be the least ordinal κ such that L κ (R) is admissible. Let $A = \{x \in \mathbb{R} \mid (\exists\alpha such that x is ordinal definable in L α (R)}. It is well known that (assuming determinacy) A is the largest countable inductive set of reals. Let T be the theory: ZFC - Replacement + "There exists ω Woodin cardinals which are cofinal in the ordinals." T has consistency strength weaker than that of the theory ZFC + (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  21.  67
    The consistency strength of long projective determinacy.Juan P. Aguilera & Sandra Müller - 2019 - Journal of Symbolic Logic 85 (1):338-366.
    We determine the consistency strength of determinacy for projective games of length ω^2. Our main theorem is that $\Pi _{n + 1}^1$-determinacy for games of length ω^2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that M_n(A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $A = R$ and the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  24
    Embeddings of countable closed sets and reverse mathematics.Jeffry L. Hirst - 1993 - Archive for Mathematical Logic 32 (6):443-449.
    If there is a homeomorphic embedding of one set into another, the sets are said to be topologically comparable. Friedman and Hirst have shown that the topological comparability of countable closed subsets of the reals is equivalent to the subsystem of second order arithmetic denoted byATR 0. Here, this result is extended to countable closed locally compact subsets of arbitrary complete separable metric spaces. The extension uses an analogue of the one point compactification of ℝ.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  1
    Many problems, different frameworks: classification of problems in computable analysis and algorithmic learning theory.Vittorio Cipriani - 2024 - Bulletin of Symbolic Logic 30 (2):287-288.
    In this thesis, we study the complexity of some mathematical problems: in particular, those arising in computable analysis and algorithmic learning theory for algebraic structures. Our study is not limited to these two areas: indeed, in both cases, the results we obtain are tightly connected to ideas and tools coming from different areas of mathematical logic, including for example descriptive set theory and reverse mathematics.After giving the necessary preliminaries, we first study the uniform computational strength of the Cantor–Bendixson theorem in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. In Good Company? On Hume’s Principle and the Assignment of Numbers to Infinite Concepts.Paolo Mancosu - 2015 - Review of Symbolic Logic 8 (2):370-410.
    In a recent article, I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  25.  63
    Games of countable length. Sets and Proofs. [REVIEW]Paul B. Larson - 2005 - Bulletin of Symbolic Logic 11 (4):542-544.
  26. More trouble for regular probabilitites.Matthew W. Parker - 2012
    In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27.  61
    Observables on hypergraphs.S. P. Gudder & G. T. Rüttimann - 1986 - Foundations of Physics 16 (8):773-790.
    Observables on hypergraphs are described by event-valued measures. We first distinguish between finitely additive observables and countably additive ones. We then study the spectrum, compatibility, and functions of observables. Next a relationship between observables and certain functionals on the set of measures M(H) of a hypergraph H is established. We characterize hypergraphs for which every linear functional on M(H) is determined by an observable. We define the concept of an “effect” and show that observables are related to effect-valued (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  24
    The Ultrafilter Closure in ZF.Gonçalo Gutierres - 2010 - Mathematical Logic Quarterly 56 (3):331-336.
    It is well known that, in a topological space, the open sets can be characterized using ?lter convergence. In ZF , we cannot replace filters by ultrafilters. It is proven that the ultra?lter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultra?lter Theorem is equivalent to the fact that uX = kX for every topological space X, where k is the usual Kuratowski closure operator (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29. Classical logic without bivalence.Tor Sandqvist - 2009 - Analysis 69 (2):211-218.
    Semantic justifications of the classical rules of logical inference typically make use of a notion of bivalent truth, understood as a property guaranteed to attach to a sentence or its negation regardless of the prospects for speakers to determine it as so doing. For want of a convincing alternative account of classical logic, some philosophers suspicious of such recognition-transcending bivalence have seen no choice but to declare classical deduction unwarranted and settle for a weaker system; intuitionistic logic in particular, buttressed (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  30.  77
    Presence and Post-Modernism.James Mensch - 1997 - American Catholic Philosophical Quarterly 71 (2):145-156.
    The post-modern, post-enlightenment debate on the nature of being begins with Heidegger’s assertion that the “ancient interpretation of the being of beings” is informed by “the determination of the sense of being as ... ‘presence.’”[i] This understanding, which reduces being to temporal presence, is supposed to have set all subsequent philosophical reflection. At its origin is “Aristotle’s essay on time.” In Heidegger’s reading, Aristotle interprets entities with regard to the present, equating their being with temporal presence. He also takes time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  31.  48
    Inverse topological systems and compactness in abstract model theory.Daniele Mundici - 1986 - Journal of Symbolic Logic 51 (3):785-794.
    Given an abstract logic L = L(Q i ) i ∈ I generated by a set of quantifiers Q i , one can construct for each type τ a topological space S τ exactly as one constructs the Stone space for τ in first-order logic. Letting T be an arbitrary directed set of types, the set $S_T = \{(S_\tau, \pi^\tau_\sigma)\mid\sigma, \tau \in T, \sigma \subset \tau\}$ is an inverse topological system whose bonding mappings π τ σ are naturally determined (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  49
    Unique solutions.Peter Schuster - 2006 - Mathematical Logic Quarterly 52 (6):534-539.
    It is folklore that if a continuous function on a complete metric space has approximate roots and in a uniform manner at most one root, then it actually has a root, which of course is uniquely determined. Also in Bishop's constructive mathematics with countable choice, the general setting of the present note, there is a simple method to validate this heuristic principle. The unique solution even becomes a continuous function in the parameters by a mild modification of the uniqueness (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  33. HOD L(ℝ) is a Core Model Below Θ.John R. Steel - 1995 - Bulletin of Symbolic Logic 1 (1):75-84.
    In this paper we shall answer some questions in the set theory of L, the universe of all sets constructible from the reals. In order to do so, we shall assume ADL, the hypothesis that all 2-person games of perfect information on ω whose payoff set is in L are determined. This is by now standard practice. ZFC itself decides few questions in the set theory of L, and for reasons we cannot discuss here, ZFC + ADL yields the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  34.  67
    Countable models of set theories.Harvey Friedman - 1973 - In A. R. D. Mathias & Hartley Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York,: Springer Verlag. pp. 539--573.
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
  35.  18
    From a well-ordering of the reals it is easy (by a diagonal argument) to produce a non-determined set of reals. However, large cardinal axioms imply that all sets of reals in L (R), and more, are determined. See, for example, Neeman's papers Optimalproofs of determinacy.Andrzej S. Murawski - 1995 - Bulletin of Symbolic Logic 1:327-339.
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  97
    Every countable model of set theory embeds into its own constructible universe.Joel David Hamkins - 2013 - Journal of Mathematical Logic 13 (2):1350006.
    The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  37.  20
    Reversibility of extreme relational structures.Miloš S. Kurilić & Nenad Morača - 2020 - Archive for Mathematical Logic 59 (5-6):565-582.
    A relational structure \ is called reversible iff each bijective homomorphism from \ onto \ is an isomorphism, and linear orders are prototypical examples of such structures. One way to detect new reversible structures of a given relational language L is to notice that the maximal or minimal elements of isomorphism-invariant sets of interpretations of the language L on a fixed domain X determine reversible structures. We isolate certain syntactical conditions providing that a satisfiable \-theory defines a class of interpretations (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  36
    Simplicity and uncountable categoricity in excellent classes.Tapani Hyttinen & Olivier Lessmann - 2006 - Annals of Pure and Applied Logic 139 (1):110-137.
    We introduce Lascar strong types in excellent classes and prove that they coincide with the orbits of the group generated by automorphisms fixing a model. We define a new independence relation using Lascar strong types and show that it is well-behaved over models, as well as over finite sets. We then develop simplicity and show that, under simplicity, the independence relation satisfies all the properties of nonforking in a stable first order theory. Further, simplicity for an excellent class, as well (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  39. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  40.  35
    On two topological cardinal invariants of an order-theoretic flavour.Santi Spadaro - 2012 - Annals of Pure and Applied Logic 163 (12):1865-1871.
    Noetherian type and Noetherian π-type are two cardinal functions which were introduced by Peregudov in 1997, capturing some properties studied earlier by the Russian School. Their behavior has been shown to be akin to that of the cellularity, that is the supremum of the sizes of pairwise disjoint non-empty open sets in a topological space. Building on that analogy, we study the Noetherian π-type of κ-Suslin Lines, and we are able to determine it for every κ up to the first (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  41. Ordered groups: A case study in reverse mathematics.Reed Solomon - 1999 - Bulletin of Symbolic Logic 5 (1):45-58.
    The fundamental question in reverse mathematics is to determine which set existence axioms are required to prove particular theorems of mathematics. In addition to being interesting in their own right, answers to this question have consequences in both effective mathematics and the foundations of mathematics. Before discussing these consequences, we need to be more specific about the motivating question.Reverse mathematics is useful for studying theorems of either countable or essentially countable mathematics. Essentially countable mathematics is a vague term that is (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  34
    On the Cardinality of Future Worldlines in Discrete Spacetime Structures.Zeki Seskir & Ahmet Çevik - 2023 - Foundations of Physics 53 (3):1-18.
    We give an analysis over a variation of causal sets where the light cone of an event is represented by finitely branching trees with respect to any given arbitrary dynamics. We argue through basic topological properties of Cantor space that under certain assumptions about the universe, spacetime structure and causation, given any event x, the number of all possible future worldlines of x within the many-worlds interpretation is uncountable. However, if all worldlines extending the event x are ‘eventually deterministic’, then (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  84
    Monadic Bounded Algebras.Galym Akishev & Robert Goldblatt - 2010 - Studia Logica 96 (1):1 - 40.
    We introduce the equational notion of a monadic bounded algebra (MBA), intended to capture algebraic properties of bounded quantification. The variety of all MBA's is shown to be generated by certain algebras of two-valued propositional functions that correspond to models of monadic free logic with an existence predicate. Every MBA is a subdirect product of such functional algebras, a fact that can be seen as an algebraic counterpart to semantic completeness for monadic free logic. The analysis involves the representation of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44.  9
    Countably perfectly Meager sets.Roman Pol & Piotr Zakrzewski - 2021 - Journal of Symbolic Logic 86 (3):1214-1227.
    We study a strengthening of the notion of a perfectly meager set. We say that a subset A of a perfect Polish space X is countably perfectly meager in X, if for every sequence of perfect subsets $\{P_n: n \in \mathbb N\}$ of X, there exists an $F_\sigma $ -set F in X such that $A \subseteq F$ and $F\cap P_n$ is meager in $P_n$ for each n. We give various characterizations and examples of countably perfectly meager sets. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  65
    Countable unions of simple sets in the core model.P. D. Welch - 1996 - Journal of Symbolic Logic 61 (1):293-312.
    We follow [8] in asking when a set of ordinals $X \subseteq \alpha$ is a countable union of sets in K, the core model. We show that, analogously to L, and X closed under the canonical Σ 1 Skolem function for K α can be so decomposed provided K is such that no ω-closed filters are put on its measure sequence, but not otherwise. This proviso holds if there is no inner model of a weak Erdős-type property.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46.  81
    An Impossibility Theorem for Allocation Aggregation.Carl Wagner & Mark Shattuck - 2014 - Journal of Philosophical Logic 43 (6):1173-1186.
    Among the many sorts of problems encountered in decision theory, allocation problems occupy a central position. Such problems call for the assignment of a nonnegative real number to each member of a finite set of entities, in such a way that the values so assigned sum to some fixed positive real number s. Familiar cases include the problem of specifying a probability mass function on a countable set of possible states of the world, and the distribution of a certain sum (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  47.  38
    Arithmetically Saturated Models of Arithmetic.Roman Kossak & James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):531-546.
    The paper presents an outline of the general theory of countable arithmetically saturated models of PA and some of its applications. We consider questions concerning the automorphism group of a countable recursively saturated model of PA. We prove new results concerning fixed point sets, open subgroups, and the cofinality of the automorphism group. We also prove that the standard system of a countable arithmetically saturated model of PA is determined by the lattice of its elementary substructures.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  48.  15
    Every Countable Model of Arithmetic or Set Theory has a Pointwise-Definable End Extension.Joel David Hamkins - forthcoming - Kriterion – Journal of Philosophy.
    According to the math tea argument, there must be real numbers that we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions. And yet, the existence of pointwise-definable models of set theory, in which every individual is definable without parameters, challenges this conclusion. In this article, I introduce a flexible new method for constructing pointwise-definable models of arithmetic and set theory, showing furthermore that every countable model of Zermelo-Fraenkel ZF set theory and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  23
    Cohesive powers of structures.Valentina Harizanov & Keshav Srinivasan - 2024 - Archive for Mathematical Logic 63 (5):679-702.
    A cohesive power of a structure is an effective analog of the classical ultrapower of a structure. We start with a computable structure, and consider its effective power over a cohesive set of natural numbers. A cohesive set is an infinite set of natural numbers that is indecomposable with respect to computably enumerable sets. It plays the role of an ultrafilter, and the elements of a cohesive power are the equivalence classes of certain partial computable functions determined by the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  27
    Absolutely independent axiomatizations for countable sets in classical logic.Joanna Grygiel - 1989 - Studia Logica 48 (1):77 - 84.
    The notion of absolute independence, considered in this paper has a clear algebraic meaning and is a strengthening of the usual notion of logical independence. We prove that any consistent and countable set in classical prepositional logic has an absolutely independent axiornatization.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 978