Results for ' Glivenko theorem'

957 found
Order:
  1.  63
    Glivenko theorems and negative translations in substructural predicate logics.Hadi Farahani & Hiroakira Ono - 2012 - Archive for Mathematical Logic 51 (7-8):695-707.
    Along the same line as that in Ono (Ann Pure Appl Logic 161:246–250, 2009), a proof-theoretic approach to Glivenko theorems is developed here for substructural predicate logics relative not only to classical predicate logic but also to arbitrary involutive substructural predicate logics over intuitionistic linear predicate logic without exponentials QFLe. It is shown that there exists the weakest logic over QFLe among substructural predicate logics for which the Glivenko theorem holds. Negative translations of substructural predicate logics are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  48
    Glivenko theorems revisited.Hiroakira Ono - 2010 - Annals of Pure and Applied Logic 161 (2):246-250.
    Glivenko-type theorems for substructural logics are comprehensively studied in the paper [N. Galatos, H. Ono, Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71 1353–1384]. Arguments used there are fully algebraic, and based on the fact that all substructural logics are algebraizable 279–308] and also [N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, in: Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier, 2007] for the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  3.  66
    Glivenko Theorems for Substructural Logics over FL.Nikolaos Galatos & Hiroakira Ono - 2006 - Journal of Symbolic Logic 71 (4):1353 - 1384.
    It is well known that classical propositional logic can be interpreted in intuitionistic propositional logic. In particular Glivenko's theorem states that a formula is provable in the former iff its double negation is provable in the latter. We extend Glivenko's theorem and show that for every involutive substructural logic there exists a minimum substructural logic that contains the first via a double negation interpretation. Our presentation is algebraic and is formulated in the context of residuated lattices. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  4.  51
    A short proof of Glivenko theorems for intermediate predicate logics.Christian Espíndola - 2013 - Archive for Mathematical Logic 52 (7-8):823-826.
    We give a simple proof-theoretic argument showing that Glivenko’s theorem for propositional logic and its version for predicate logic follow as an easy consequence of the deduction theorem, which also proves some Glivenko type theorems relating intermediate predicate logics between intuitionistic and classical logic. We consider two schemata, the double negation shift (DNS) and the one consisting of instances of the principle of excluded middle for sentences (REM). We prove that both schemata combined derive classical logic, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  5.  28
    De Jongh and Glivenko theorems for equality theories ★.Alexey Romanov - 2007 - Journal of Applied Non-Classical Logics 17 (3):347-357.
    This paper is concerned with the logical structure of intuitionistic equality theories. We prove that De Jongh theorem holds for the theory of decidable equality, but uniform De Jongh theorem fails even for the theory of weakly decidable equality. We also show that the theory of weakly decidable equality is the weakest equality theory which enjoys Glivenko theorem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  54
    Glivenko like theorems in natural expansions of BCK‐logic.Roberto Cignoli & Antoni Torrens Torrell - 2004 - Mathematical Logic Quarterly 50 (2):111-125.
    The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK-logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK-logic with negation by a family of connectives implicitly defined by equations and compatible with BCK-congruences. Many of the logics in the current literature are natural expansions of BCK-logic with negation. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  7.  82
    Glivenko type theorems for intuitionistic modal logics.Guram Bezhanishvili - 2001 - Studia Logica 67 (1):89-109.
    In this article we deal with Glivenko type theorems for intuitionistic modal logics over Prior's MIPC. We examine the problems which appear in proving Glivenko type theorems when passing from the intuitionistic propositional logic Intto MIPC. As a result we obtain two different versions of Glivenko's theorem for logics over MIPC. Since MIPCcan be thought of as a one-variable fragment of the intuitionistic predicate logic Q-Int, one of the versions of Glivenko's theorem for logics (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  8.  91
    Postponement of $$mathsf {}$$ and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule ) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of \, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  38
    An Approach to Glivenko’s Theorem in Algebraizable Logics.Antoni Torrens - 2008 - Studia Logica 88 (3):349-383.
    In a classical paper [15] V. Glivenko showed that a proposition is classically demonstrable if and only if its double negation is intuitionistically demonstrable. This result has an algebraic formulation: the double negation is a homomorphism from each Heyting algebra onto the Boolean algebra of its regular elements. Versions of both the logical and algebraic formulations of Glivenko’s theorem, adapted to other systems of logics and to algebras not necessarily related to logic can be found in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  42
    A modal analog for Glivenko's theorem and its applications.V. V. Rybakov - 1992 - Notre Dame Journal of Formal Logic 33 (2):244-248.
  11.  34
    Generalized Bosbach and Riečan states on nucleus-based-Glivenko residuated lattices.Bin Zhao & Hongjun Zhou - 2013 - Archive for Mathematical Logic 52 (7-8):689-706.
    Bosbach and Riečan states on residuated lattices both are generalizations of probability measures on Boolean algebras. Just from the observation that both of them can be defined by using the canonical structure of the standard MV-algebra on the unit interval [0, 1], generalized Riečan states and two types of generalized Bosbach states on residuated lattices were recently introduced by Georgescu and Mureşan through replacing the standard MV-algebra with arbitrary residuated lattices as codomains. In the present paper, the Glivenko (...) is first extended to residuated lattices with a nucleus, which gives several necessary and sufficient conditions for the underlying nucleus to be a residuated lattice homomorphism. Then it is proved that every generalized Bosbach state (of type I, or of type II) compatible with the nucleus on a nucleus-based-Glivenko residuated lattice is uniquely determined by its restriction on the nucleus image of the underlying residuated lattice, and every relatively generalized Riečan state compatible with the double relative negation on an arbitrary residuated lattice is uniquely determined by its restriction on the double relative negation image of the residuated lattice. Our results indicate that many-valued probability theory compatible with nuclei on residuated lattices reduces in essence to probability theory on algebras of fixpoints of the underlying nuclei. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  17
    The existence of states based on Glivenko semihoops.Pengfei He, Juntao Wang & Jiang Yang - 2022 - Archive for Mathematical Logic 61 (7):1145-1170.
    In this paper, we mainly investigate the existence of states based on the Glivenko theorem in bounded semihoops, which are building blocks for the algebraic semantics for relevant fuzzy logics. First, we extend algebraic formulations of the Glivenko theorem to bounded semihoops and give some characterizations of Glivenko semihoops and regular semihoops. The category of regular semihoops is a reflective subcategory of the category of Glivenko semihoops. Moreover, by means of the negative translation term, (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. On the proof theory of the intermediate logic MH.Jonathan P. Seldin - 1986 - Journal of Symbolic Logic 51 (3):626-647.
    A natural deduction formulation is given for the intermediate logic called MH by Gabbay in [4]. Proof-theoretic methods are used to show that every deduction can be normalized, that MH is the weakest intermediate logic for which the Glivenko theorem holds, and that the Craig-Lyndon interpolation theorem holds for it.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  14.  46
    Boolean Algebras in Visser Algebras.Majid Alizadeh, Mohammad Ardeshir & Wim Ruitenburg - 2016 - Notre Dame Journal of Formal Logic 57 (1):141-150.
    We generalize the double negation construction of Boolean algebras in Heyting algebras to a double negation construction of the same in Visser algebras. This result allows us to generalize Glivenko’s theorem from intuitionistic propositional logic and Heyting algebras to Visser’s basic propositional logic and Visser algebras.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  15.  67
    On second order intuitionistic propositional logic without a universal quantifier.Konrad Zdanowski - 2009 - Journal of Symbolic Logic 74 (1):157-167.
    We examine second order intuitionistic propositional logic, IPC². Let $F_\exists $ be the set of formulas with no universal quantification. We prove Glivenko's theorem for formulas in $F_\exists $ that is, for φ € $F_\exists $ φ is a classical tautology if and only if ¬¬φ is a tautology of IPC². We show that for each sentence φ € $F_\exists $ (without free variables), φ is a classical tautology if and only if φ is an intuitionistic tautology. As (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  16.  42
    Free‐decomposability in varieties of semi‐Heyting algebras.Manuel Abad, Juan Manuel Cornejo & Patricio Díaz Varela - 2012 - Mathematical Logic Quarterly 58 (3):168-176.
    In this paper we prove that the free algebras in a subvariety equation image of the variety equation image of semi-Heyting algebras are directly decomposable if and only if equation image satisfies the Stone identity.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  34
    Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation.Norihiro Kamide - 2021 - Journal of Logic, Language and Information 30 (3):491-531.
    In this study, we introduce Gentzen-type sequent calculi BDm and BDi for a modal extension and an intuitionistic modification, respectively, of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation. We prove theorems for syntactically and semantically embedding BDm and BDi into Gentzen-type sequent calculi S4 and LJ for normal modal logic and intuitionistic logic, respectively. The cut-elimination, decidability, and completeness theorems for BDm and BDi are obtained using these embedding theorems. Moreover, we prove the Glivenko theorem (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  22
    Rules of Explosion and Excluded Middle: Constructing a Unified Single-Succedent Gentzen-Style Framework for Classical, Paradefinite, Paraconsistent, and Paracomplete Logics.Norihiro Kamide - 2024 - Journal of Logic, Language and Information 33 (2):143-178.
    A unified and modular falsification-aware single-succedent Gentzen-style framework is introduced for classical, paradefinite, paraconsistent, and paracomplete logics. This framework is composed of two special inference rules, referred to as the rules of explosion and excluded middle, which correspond to the principle of explosion and the law of excluded middle, respectively. Similar to the cut rule in Gentzen’s LK for classical logic, these rules are admissible in cut-free LK. A falsification-aware single-succedent Gentzen-style sequent calculus fsCL for classical logic is formalized based (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  4
    G3-style Sequent Calculi for Gurevich Logic and Its Neighbors.Norihiro Kamide & Sara Negri - forthcoming - Studia Logica:1-29.
    G3-style sequent calculi are introduced for a family of logics with strong negation: Gurevich logic, Nelson logic, intuitionistic propositional logic, Avron logic, De-Omori logic, and classical propositional logic. Structural properties including cut elimination are established for these calculi. In addition, a Glivenko theorem for embedding classical propositional logic into Gurevich logic is shown.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  26
    The Jacobson Radical of a Propositional Theory.Giulio Fellin, Peter Schuster & Daniel Wessel - 2022 - Bulletin of Symbolic Logic 28 (2):163-181.
    Alongside the analogy between maximal ideals and complete theories, the Jacobson radical carries over from ideals of commutative rings to theories of propositional calculi. This prompts a variant of Lindenbaum’s Lemma that relates classical validity and intuitionistic provability, and the syntactical counterpart of which is Glivenko’s Theorem. The Jacobson radical in fact turns out to coincide with the classical deductive closure. As a by-product we obtain a possible interpretation in logic of the axioms-as-rules conservation criterion for a multi-conclusion (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  52
    A proof-search procedure for intuitionistic propositional logic.R. Alonderis - 2013 - Archive for Mathematical Logic 52 (7-8):759-778.
    A sequent root-first proof-search procedure for intuitionistic propositional logic is presented. The procedure is obtained from modified intuitionistic multi-succedent and classical sequent calculi, making use of Glivenko’s Theorem. We prove that a sequent is derivable in a standard intuitionistic multi-succedent calculus if and only if the corresponding prefixed-sequent is derivable in the procedure.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  23
    Intuitionistic propositional logic with Galois connections.Wojciech Dzik, Jouni Järvinen & Michiro Kondo - 2010 - Logic Journal of the IGPL 18 (6):837-858.
    In this work, an intuitionistic propositional logic with a Galois connection is introduced. In addition to the intuitionistic logic axioms and inference rule of modus ponens, the logic contains only two rules of inference mimicking the performance of Galois connections. Both Kripke-style and algebraic semantics are presented for IntGC, and IntGC is proved to be complete with respect to both of these semantics. We show that IntGC has the finite model property and is decidable, but Glivenko's Theorem does (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23.  22
    A Proof-Theoretic Approach to Negative Translations in Intuitionistic Tense Logics.Zhe Lin & Minghui Ma - 2022 - Studia Logica 110 (5):1255-1289.
    A cut-free Gentzen sequent calculus for Ewald’s intuitionistic tense logic \ is established. By the proof-theoretic method, we prove that, for every set of strictly positive implications S, the classical tense logic \ is embedded into its intuitionistic analogue \ via Kolmogorov, Gödel–Genzten and Kuroda translations respectively. A sufficient and necessary condition for Glivenko type theorem in tense logics is established.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  44
    Embedding classical in minimal implicational logic.Hajime Ishihara & Helmut Schwichtenberg - 2016 - Mathematical Logic Quarterly 62 (1-2):94-101.
    Consider the problem which set V of propositional variables suffices for whenever, where, and ⊢c and ⊢i denote derivability in classical and intuitionistic implicational logic, respectively. We give a direct proof that stability for the final propositional variable of the (implicational) formula A is sufficient; as a corollary one obtains Glivenko's theorem. Conversely, using Glivenko's theorem one can give an alternative proof of our result. As an alternative to stability we then consider the Peirce formula. It (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  44
    Paraconsistent Double Negations as Classical and Intuitionistic Negations.Norihiro Kamide - 2017 - Studia Logica 105 (6):1167-1191.
    A classical paraconsistent logic, which is regarded as a modified extension of first-degree entailment logic, is introduced as a Gentzen-type sequent calculus. This logic can simulate the classical negation in classical logic by paraconsistent double negation in CP. Theorems for syntactically and semantically embedding CP into a Gentzen-type sequent calculus LK for classical logic and vice versa are proved. The cut-elimination and completeness theorems for CP are also shown using these embedding theorems. Similar results are also obtained for an intuitionistic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  26.  17
    An Algebraic Study of S5-Modal Gödel Logic.Diego Castaño, Cecilia Cimadamore, José Patricio Díaz Varela & Laura Rueda - 2021 - Studia Logica 109 (5):937-967.
    In this paper we continue the study of the variety \ of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of \ and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  23
    Investigations into intuitionistic and other negations.Satoru Niki - 2022 - Bulletin of Symbolic Logic 28 (4):532-532.
    Intuitionistic logic formalises the foundational ideas of L.E.J. Brouwer’s mathematical programme of intuitionism. It is one of the earliest non-classical logics, and the difference between classical and intuitionistic logic may be interpreted to lie in the law of the excluded middle, which asserts that either a proposition is true or its negation is true. This principle is deemed unacceptable from the constructive point of view, in whose understanding the law means that there is an effective procedure to determine the truth (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  62
    A New Normalization Strategy for the Implicational Fragment of Classical Propositional Logic.Luiz C. Pereira, Edward H. Haeusler, Vaston G. Costa & Wagner Sanz - 2010 - Studia Logica 96 (1):95-108.
    The introduction and elimination rules for material implication in natural deduction are not complete with respect to the implicational fragment of classical logic. A natural way to complete the system is through the addition of a new natural deduction rule corresponding to Peirce's formula → A) → A). E. Zimmermann [6] has shown how to extend Prawitz' normalization strategy to Peirce's rule: applications of Peirce's rule can be restricted to atomic conclusions. The aim of the present paper is to extend (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  29.  59
    Inhabitation of polymorphic and existential types.Makoto Tatsuta, Ken-Etsu Fujita, Ryu Hasegawa & Hiroshi Nakano - 2010 - Annals of Pure and Applied Logic 161 (11):1390-1399.
    This paper shows that the inhabitation problem in the lambda calculus with negation, product, polymorphic, and existential types is decidable, where the inhabitation problem asks whether there exists some term that belongs to a given type. In order to do that, this paper proves the decidability of the provability in the logical system defined from the second-order natural deduction by removing implication and disjunction. This is proved by showing the quantifier elimination theorem and reducing the problem to the provability (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  21
    Decidable variables for constructive logics.Satoru Niki - 2020 - Mathematical Logic Quarterly 66 (4):484-493.
    Ishihara's problem of decidable variables asks which class of decidable propositional variables is sufficient to warrant classical theorems in intuitionistic logic. We present several refinements to the class proposed by Ishii for this problem, which also allows the class to cover Glivenko's logic. We also treat the extension of the problem to minimal logic, suggesting a couple of new classes.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  52
    Information Completeness in Nelson Algebras of Rough Sets Induced by Quasiorders.Jouni Järvinen, Piero Pagliani & Sándor Radeleczki - 2013 - Studia Logica 101 (5):1073-1092.
    In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder R, its rough set-based Nelson algebra can be obtained by applying Sendlewski’s well-known construction. We prove that if the set of all R-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by the quasiorder R (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  74
    An Incompleteness Theorem for Modal Relevant Logics.Shawn Standefer - 2021 - Notre Dame Journal of Formal Logic 62 (4):669 - 681.
    In this paper, an incompleteness theorem for modal extensions of relevant logics is proved. The proof uses elementary methods and builds upon the work of Fuhrmann.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33.  21
    The internal consistency of Easton’s theorem.Sy-David Friedman & Pavel Ondrejovič - 2008 - Annals of Pure and Applied Logic 156 (2):259-269.
    An Easton function is a monotone function C from infinite regular cardinals to cardinals such that C has cofinality greater than α for each infinite regular cardinal α. Easton showed that assuming GCH, if C is a definable Easton function then in some cofinality-preserving extension, C=2α for all infinite regular cardinals α. Using “generic modification”, we show that over the ground model L, models witnessing Easton’s theorem can be obtained as inner models of L[0#], for Easton functions which are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  34.  32
    Herbrand's theorem as higher order recursion.Bahareh Afshari, Stefan Hetzl & Graham E. Leigh - 2020 - Annals of Pure and Applied Logic 171 (6):102792.
  35.  24
    Generalized Completeness Theorem and Solvability of Systems of Boolean Polynomial Equations.Alexander Abian - 1970 - Mathematical Logic Quarterly 16 (3):263-264.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  66
    Remarks on a theorem of McGee.Ernest W. Adams - 1995 - Journal of Philosophical Logic 24 (4):343 - 348.
  37.  29
    Philosophical Essence of Poincare-Perelman Theorem and the Problem of Global Structure of Universe.Andrey V. Dakhin - 2008 - Proceedings of the Xxii World Congress of Philosophy 44:11-23.
    The paper presents the reflection on philosophical foundations of contemporary physical concepts of global history and global structure of Universe. It shows that Democritus's dualism of "matter and void" is changed now in dualism of "matter and energy" in the frame of the strings theory, where anything what looks like "a void" is absent. At the same time the Poincare-Perelman's theorem calls to rethink Democritus's philosophy in the light of "space and hole" discourse and call it to come back. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38. Bayes' Theorem.Edward N. Zalta - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
     
    Export citation  
     
    Bookmark   7 citations  
  39. The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  39
    Rado's theorem and solvability of systems of equations.Alexander Abian - 1973 - Notre Dame Journal of Formal Logic 14 (2):145-150.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  15
    CoCEC: An Automatic Combinational Circuit Equivalence Checker Based on the Interactive Theorem Prover.Wilayat Khan, Farrukh Aslam Khan, Abdelouahid Derhab & Adi Alhudhaif - 2021 - Complexity 2021:1-12.
    Checking the equivalence of two Boolean functions, or combinational circuits modeled as Boolean functions, is often desired when reliable and correct hardware components are required. The most common approaches to equivalence checking are based on simulation and model checking, which are constrained due to the popular memory and state explosion problems. Furthermore, such tools are often not user-friendly, thereby making it tedious to check the equivalence of large formulas or circuits. An alternative is to use mathematical tools, called interactive (...) provers, to prove the equivalence of two circuits; however, this requires human effort and expertise to write multiple output functions and carry out interactive proof of their equivalence. In this paper, we define two simple, one formal and the other informal, gate-level hardware description languages, design and develop a formal automatic combinational circuit equivalence checker tool, and test and evaluate our tool. The tool CoCEC is based on human-assisted theorem prover Coq, yet it checks the equivalence of circuit descriptions purely automatically through a human-friendly user interface. It either returns a machine-readable proof of circuits’ equivalence or a counterexample of their inequality. The interface enables users to enter or load two circuit descriptions written in an easy and natural style. It automatically proves, in few seconds, the equivalence of circuits with as many as 45 variables. CoCEC has a mathematical foundation, and it is reliable, quick, and easy to use. The tool is intended to be used by digital logic circuit designers, logicians, students, and faculty during the digital logic design course. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  51
    How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic Q.Dan E. Willard - 2002 - Journal of Symbolic Logic 67 (1):465-496.
    Let us recall that Raphael Robinson's Arithmetic Q is an axiom system that differs from Peano Arithmetic essentially by containing no Induction axioms [13], [18]. We will generalize the semantic-tableaux version of the Second Incompleteness Theorem almost to the level of System Q. We will prove that there exists a single rather long Π 1 sentence, valid in the standard model of the Natural Numbers and denoted as V, such that if α is any finite consistent extension of Q (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  43.  38
    On the Nonreality of the PBR Theorem.Marcoen J. T. F. Cabbolet - 2023 - Foundations of Physics 53 (3):1-8.
    The PBR theorem, which implies that the Einsteinian realist view on quantum mechanics (QM) is inconsistent with predictions of the standard Copenhagen view on QM, has been hailed as one of the most important theorems in the foundations of QM. Here we show that the special measurement, used by Pusey et al. to derive the theorem, is nonexisting from the Einsteinian view on QM.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. On the Depth of Szemeredi's Theorem.Andrew Arana - 2015 - Philosophia Mathematica 23 (2):163-176.
    Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  45.  9
    (1 other version)Bell's Theorem without Inequalities.Daniel M. Greenberger, Michael A. Horne, Abner Shimony & Anton Zeilenger - 1990 - American Journal of Physics 58 (12):1131--1143.
  46.  35
    The approach towards equilibrium in Lanford’s theorem.Giovanni Valente - 2014 - European Journal for Philosophy of Science 4 (3):309-335.
    This paper develops a philosophical investigation of the merits and faults of a theorem by Lanford , Lanford , Lanford for the problem of the approach towards equilibrium in statistical mechanics. Lanford’s result shows that, under precise initial conditions, the Boltzmann equation can be rigorously derived from the Hamiltonian equations of motion for a hard spheres gas in the Boltzmann-Grad limit, thereby proving the existence of a unique solution of the Boltzmann equation, at least for a very short amount (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  47.  33
    Non-Locality as a Fundamental Principle of Reality: Bell's Theorem and Space-Like Interconnectedness.A. Rauscher Elizabeth - 2017 - Cosmos and History 13 (2):204-216.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  48. (1 other version)A theorem about infinite-valued sentential logic.Robert McNaughton - 1951 - Journal of Symbolic Logic 16 (1):1-13.
  49. The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  50.  83
    Branching space-time analysis of the GHZ theorem.Nuel Belnap & László E. Szabó - 1996 - Foundations of Physics 26 (8):989-1002.
    Greenberger. Horne. Shimony, and Zeilinger gave a new version of the Bell theorem without using inequalities (probabilities). Mermin summarized it concisely; but Bohm and Hiley criticized Mermin's proof from contextualists' point of view. Using the branching space-time language, in this paper a proof will be given that is free of these difficulties. At the same time we will also clarify the limits of the validity of the theorem when it is taken as a proof that quantum mechanics is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   39 citations  
1 — 50 / 957