Results for ' Quantum mechanics and relativity'

972 found
Order:
  1. Quantum Mechanics on Hilbert Manifolds: The Principle of Functional Relativity[REVIEW]Alexey A. Kryukov - 2006 - Foundations of Physics 36 (2):175-226.
    Quantum mechanics is formulated as a geometric theory on a Hilbert manifold. Images of charts on the manifold are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations in this setting, also called functional tensor equations, describe families of functional equations on various Hilbert spaces of functions. The principle of functional relativity is introduced which states that quantum theory (QT) is indeed a functional tensor theory, i.e., it can be (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  2.  12
    The Problem of Time: Quantum Mechanics Versus General Relativity.Edward Anderson - 2017 - Cham: Imprint: Springer.
    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  3.  94
    How to reconcile modal interpretations of quantum mechanics with relativity.Joseph Berkovitz & Meir Hemmo - unknown
    Recent no go theorems by Dickson and Clifton (1998), Arntzenius (1998) and Myrvold (2002) demonstrate that current modal interpretations are incompatible with relativity. In this paper we propose strategies for how to circumvent these theorems. We further show how these strategies can be developped into new modal interpretations in which the properties of systems are in general either holistic or relational. We explicitly write down an outline of dynamics for these properties which does not pick out a preferred foliation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  4.  76
    Quantum mechanics as demanded by the special theory of relativity.Charles Harding - 1977 - Foundations of Physics 7 (1-2):69-76.
    We present a new approach on the interpretation of the quantum mechanism. The derivation is phenomenological and incorporates an energetic vacuum which interacts with elementary particles. We consider a classical ensemble average for the square of 4-velocities of identical elementary particles with the same initial conditions in Minkowski space. The relativistic extension of a result in Brownian motion allows the variance to be identified with Bohm's quantum potential. A simple relation between 4-velocities and 4-momenta at a specific 4-position (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Can Modal Interpretations of Quantum Mechanics Be Reconciled with Relativity?Joseph Berkovitz & Meir Hemmo - 2005 - Philosophy of Science 72 (5):789-801.
    Modal interpretations are hidden-variable, no-collapse interpretations of quantum mechanics that were designed to solve the measurement problem and reconcile this theory with relativity. Yet, as no-go theorems by Dickson and Clifton, Arntzenius and Myrvold demonstrate, current modal interpretations are incompatible with relativity. In the mainstream modal interpretations, properties of composite systems are generally unrelated to the properties of their subsystems. We propose holistic and relational interpretations of properties to explain this failure of property composition. Based on (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6.  44
    A probabilistic analysis of the difficulties of unifying quantum mechanics with the theory of relativity.Manfred Neumann - 1978 - Foundations of Physics 8 (9-10):721-733.
    A procedure is given for the transformation of quantum mechanical operator equations into stochastic equations. The stochastic equations reveal a simple correlation between quantum mechanics and classical mechanics: Quantum mechanics operates with “optimal estimations,” classical mechanics is the limit of “complete information.” In this connection, Schrödinger's substitution relationsp x → -iħ ∂/∂x, etc, reveal themselves as exact mathematical transformation formulas. The stochastic version of quantum mechanical equations provides an explanation for the difficulties (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  53
    Is Retrocausal Quantum Mechanics Consistent with Special Relativity?Shan Gao - 2022 - Foundations of Physics 52 (1):1-4.
    Retrocausal quantum mechanics (RQM) provides a local causal explanation of Bell correlations. It is widely thought that RQM is consistent with special relativity. In this paper, I point out that this view is not wholly right. It is argued that RQM violates the Lorentz invariance of the temporal relation between cause and effect for certain spacelike separated events in Bell-type experiments.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  53
    Relative compatibility in conventional quantum mechanics.Gary M. Hardegree - 1977 - Foundations of Physics 7 (7-8):495-510.
    The notion of relative compability is introduced, according to which compatibility is construed as relative to individual quantum states. The compatibility domain of two observablesA, B is defined to be the set com(A, B) of states relative to whichA andB are compatible. Three basic categories of relative compatibility are then defined according to the character of com(A, B): absolute compatibility (ordinary compatibility), absolute incompatibility, and partial compatibility. Then com(A, B) is seen to be a subspace of Hilbert space invariant (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Quantum Mechanics is About Quantum Information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   42 citations  
  10. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Everett's relative-state formulation of quantum mechanics.Jeffrey Barrett - 2008 - Stanford Encyclopedia of Philosophy.
    Everett's relative-state formulation of quantum mechanics is an attempt to solve the measurement problem by dropping the collapse dynamics from the standard von Neumann-Dirac theory of quantum mechanics. The main problem with Everett's theory is that it is not at all clear how it is supposed to work. In particular, while it is clear that he wanted to explain why we get determinate measurement results in the context of his theory, it is unclear how he intended (...)
    Direct download  
     
    Export citation  
     
    Bookmark   43 citations  
  12. Relativized descriptions, quantum mechanics, and relativity.M. Mugur-Schächter - forthcoming - Foundations of Physics.
  13. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics.Harvey R. Brown & Christopher G. Timpson - 2006 - In William Demopoulos & Itamar Pitowsky, Physical Theory and its Interpretation. Springer. pp. 29-42.
    In a comparison of the principles of special relativity and of quantum mechanics, the former theory is marked by its relative economy and apparent explanatory simplicity. A number of theorists have thus been led to search for a small number of postulates - essentially information theoretic in nature - that would play the role in quantum mechanics that the relativity principle and the light postulate jointly play in Einstein's 1905 special relativity theory. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  14.  88
    Proposed Test of Relative Phase as Hidden Variable in Quantum Mechanics.Steven Peil - 2012 - Foundations of Physics 42 (12):1523-1533.
    We consider the possibility that the relative phase in quantum mechanics plays a role in determining measurement outcome and could therefore serve as a “hidden” variable. The Born rule for measurement equates the probability for a given outcome with the absolute square of the coefficient of the basis state, which by design removes the relative phase from the formulation. The value of this phase at the moment of measurement naturally averages out in an ensemble, which would prevent any (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  15. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16. Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  17.  54
    A quantum mechanical version of the paper by E. Schrödinger “Über die Umkehrung der Naturgesetze”.Otto Bergmann - 1988 - Foundations of Physics 18 (3):373-378.
    The principal results of Schrödinger's paper are reviewed and a possible extension of his formalism for diffusion processes to general quantum mechanical processes is given. The formalism is not in accord with the general theory of transformation of quantum mechanics and violates the basic assumption of the unpredictable change of a system due to a measurement. Nevertheless, the formalism leads to a density operator which is constructed according to accepted quantum mechanical rules.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18. Quantum Mechanics as a Principle Theory.Jeffrey Bub - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (1):75-94.
    I show how quantum mechanics, like the theory of relativity, can be understood as a 'principle theory' in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  19.  18
    Relational Quantum Mechanics: Ozawa’s Intersubjectivity Theorem as Justification of the Postulate on Internally Consistent Descriptions.Andrei Khrennikov - 2024 - Foundations of Physics 54 (3):1-12.
    The Ozawa’s intersubjectivity theorem (OIT) proved within quantum measurement theory supports the new postulate of relational quantum mechanics (RQM), the postulate on internally consistent descriptions. But from OIT viewpoint postulate’s formulation should be completed by the assumption of probability reproducibility. We remark that this postulate was proposed only recently to resolve the problem of intersubjectivity of information in RQM. In contrast to RQM for which OIT is a supporting theoretical statement, QBism is challenged by OIT.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  48
    Relational Quantum Mechanics at the Crossroads.Claudio Calosi & Timotheus Riedel - 2024 - Foundations of Physics 54 (6):1-24.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21. A Quantum-Mechanical Argument for Mind–Body Dualism.Jeffrey A. Barrett - 2006 - Erkenntnis 65 (1):97-115.
    I argue that a strong mind–body dualism is required of any formulation of quantum mechanics that satisfies a relatively weak set of explanatory constraints. Dropping one or more of these constraints may allow one to avoid the commitment to a mind–body dualism but may also require a commitment to a physical–physical dualism that is at least as objectionable. Ultimately, it is the preferred basis problem that pushes both collapse and no-collapse theories in the direction of a strong dualism (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  22.  86
    Quantum Mechanics: Ontology Without Individuals.Newton da Costa & Olimpia Lombardi - 2014 - Foundations of Physics 44 (12):1246-1257.
    The purpose of the present paper is to consider the traditional interpretive problems of quantum mechanics from the viewpoint of a modal ontology of properties. In particular, we will try to delineate a quantum ontology that (i) is modal, because describes the structure of the realm of possibility, and (ii) lacks the ontological category of individual. The final goal is to supply an adequate account of quantum non-individuality on the basis of this ontology.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  23. Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics.Peter J. Lewis - 2016 - New York, NY: Oxford University Press USA.
    Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good (...)
  24.  46
    Quantum Mechanics is Incomplete but it is Consistent with Locality.H. S. Perlman - 2017 - Foundations of Physics 47 (10):1309-1316.
    Quantum mechanics is seen to be incomplete not because it cannot explain the correlations that characterize entanglement without invoking either non-locality or realism, both of which, despite special relativity or no-go theorems, are at least conceivable. Quantum mechanics is incomplete, in a perhaps broader than hidden variable sense, because it fails to address within its theoretical structure the question of how even a single particle, by being in a given quantum state, causes the frequency (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Quantum Mechanics Without the Collapse Postulate.Jeffrey Alan Barrett - 1992 - Dissertation, Columbia University
    Because of the measurement problem, the standard theory of quantum mechanics is at best incomplete and at worst logically inconsistent. Everett suggested that the measurement problem could be resolved by taking the linear dynamics to be a complete and accurate description of the time-evolution of every physical system. The purpose of this dissertation is to see what happens when one takes Everett's proposal seriously. This dissertation includes a discussion of the standard theory of quantum mechanics and (...)
     
    Export citation  
     
    Bookmark   1 citation  
  26.  45
    A natural philosophy of quantum mechanics based on induction.Walter M. Elsasser - 1973 - Foundations of Physics 3 (1):117-137.
    A systematic effort is here made to express some of the general results of quantum mechanics in a conceptual form closer to ordinary language than is the case with most modern physics. Many of the implications of the theory appear much more clearly thereby, in particular the fact that the laws of quantum mechanics are only statistical propositions about classes, not referring to individual objects. Conversely, the microscopic structure of an object cannot be precisely defined in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The light of quantum mechanics.David Atkinson - 1998 - Dialectica 52 (2):103–126.
    It is argued that while classical probability theory, as it is encapsulated in the axioms of Kolmogorov and in his criterion for the independence of two events, can consistently be employed in quantum mechanics, this can only be accomplished at an exorbitant price. By considering rst the classic two-slit experiment, and then the passage of one photon through three polarizers, the applicability of Kolmogorov's last axiom is called into question, but the standard rebu of the Copenhagen interpretation is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  3
    Relational quantum mechanics is still incompatible with quantum mechanics.Jay Lawrence, Marcin Markiewicz & Marek Żukowski - 2025 - European Journal for Philosophy of Science 15 (1):1-5.
    We showed in a recent article (Lawrence et al. 2023. Quantum, 7, 1015), that relative facts (outcomes), a central concept in Relational Quantum Mechanics, are inconsistent with Quantum Mechanics. We proved this by constructing a Wigner-Friend type sequential measurement scenario on a Greenberger-Horne-Zeilinger (GHZ) state of three qubits, and making the following assumption: “if an interpretation of quantum theory introduces some conceptualization of outcomes of a measurement, then probabilities of these outcomes must follow the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  97
    The Principle Underlying Quantum Mechanics.Aage Bohr, Ben R. Mottelson & Ole Ulfbeck - 2004 - Foundations of Physics 34 (3):405-417.
    The present article reports on the finding of the principle behind quantum mechanics. The principle, referred to as genuine fortuitousness, implies that the basic event, a click in a counter, comes without any cause and thus as a discontinuity in spacetime. From this principle, the formalism of quantum mechanics emerges with a radically new content, no longer dealing with things to be measured. Instead, quantum mechanics is recognized as the theory of distributions of uncaused (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  30.  10
    Quantum Mechanics.Richard Healey - 2000 - In W. Newton-Smith, A companion to the philosophy of science. Malden, Mass.: Blackwell. pp. 376–384.
    The early twentieth century saw the development of two revolutionary physical theories: relativity (see space, time and relativity) and quantum mechanics. Relativity theory had an immediate impact on the rise of logical positivism, as philosophers like Carnap, Reichenbach, and Schlick struggled to come to terms with its content and implications (see logical positivism). By contrast, discussion of philosophical issues raised by quantum mechanics began among physicists who created the theory before being taken up (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  51
    Assessing relational quantum mechanics.Ricardo Muciño, Elias Okon & Daniel Sudarsky - 2022 - Synthese 200 (5):1-26.
    Relational Quantum Mechanics is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  32. (1 other version)On the Gravitization of Quantum Mechanics 1: Quantum State Reduction.Roger Penrose - 2014 - Foundations of Physics 44 (5):557-575.
    This paper argues that the case for “gravitizing” quantum theory is at least as strong as that for quantizing gravity. Accordingly, the principles of general relativity must influence, and actually change, the very formalism of quantum mechanics. Most particularly, an “Einsteinian”, rather than a “Newtonian” treatment of the gravitational field should be adopted, in a quantum system, in order that the principle of equivalence be fully respected. This leads to an expectation that quantum superpositions (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  33.  13
    Relativistic Quantum Mechanics.Lawrence P. Horwitz - 2015 - Dordrecht: Imprint: Springer.
    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  27
    Evading Quantum Mechanics à la Sudarshan: Quantum-Mechanics-Free Subsystem as a Realization of Koopman-von Neumann Mechanics.Zurab K. Silagadze - 2023 - Foundations of Physics 53 (6):1-6.
    Tsang and Caves suggested the idea of a quantum-mechanics-free subsystem in 2012. We contend that Sudarshan’s viewpoint on Koopman-von Neumann mechanics is realized in the quantum-mechanics-free subsystem. Since quantum-mechanics-free subsystems are being experimentally realized, Koopman-von Neumann mechanics is essentially transformed into an engineering science.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  62
    Quantum Mechanics: An Intelligible Description of Objective Reality? [REVIEW]Dennis Dieks - 2005 - Foundations of Physics 35 (3):399-415.
    Jim Cushing emphasized that physical theory should tell us an intelligible and objective story about the world, and concluded that the Bohm theory is to be preferred over the Copenhagen interpretation. We argue here, however, that the Bohm theory is only one member of a wider class of interpretations that can be said to fulfill Cushing’s desiderata. We discuss how the pictures provided by these interpretations differ from the classical one. In particular, it seems that a rather drastic form of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  36. (1 other version)A Foundational Principle for Quantum Mechanics.Anton Zeilinger - 1999 - Foundations of Physics 29 (4):631-643.
    In contrast to the theories of relativity, quantum mechanics is not yet based on a generally accepted conceptual foundation. It is proposed here that the missing principle may be identified through the observation that all knowledge in physics has to be expressed in propositions and that therefore the most elementary system represents the truth value of one proposition, i.e., it carries just one bit of information. Therefore an elementary system can only give a definite result in one (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   85 citations  
  37.  36
    Does quantum mechanics accept a stochastic support?L. de la Peña & A. M. Cetto - 1982 - Foundations of Physics 12 (10):1017-1037.
    Arguments are given in favor of a stochastic theory of quantum mechanics, clearly distinguishable from Brownian motion theory. A brief exposition of the phenomenological theory of stochastic quantum mechanics is presented, followed by a list of its main results and perspectives. A possible answer to the question about the origin of stochasticity is given in stochastic electrodynamics by assigning a real character to the vacuum radiation field. This theory is shown to reproduce important quantum mechanical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  47
    Relational Event-Time in Quantum Mechanics.Matías Pasqualini, Olimpia Lombardi & Sebastian Fortin - 2021 - Foundations of Physics 52 (1):1-25.
    Some authors, inspired by the theoretical requirements for the formulation of a quantum theory of gravity, proposed a relational reconstruction of the quantum parameter-time—the time of the unitary evolution, which would make quantum mechanics compatible with relativity. The aim of the present work is to follow the lead of those relational programs by proposing a relational reconstruction of the event-time—which orders the detection of the definite values of the system’s observables. Such a reconstruction will be (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  39. Finding “real‘ time in quantum mechanics”.Craig Callender - 2007 - In William Lane Craig & Quentin Smith, Einstein, relativity, and absolute simultaneity. New York: Routledge. pp. 50-72.
    Many believe that quantum mechanics makes the world hospitable to the tensed theory of time. Quantum mechanics is said to rescue the significance of the present moment, the mutability of the future and possibly even the whoosh of time’s flow. It allegedly does so in two different ways: by making a preferred foliation of spacetime into space and time scientifically respectable, and by wavefunction collapse injecting temporal ‘becoming’ into the world. The aim of this paper is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  40.  21
    Three-Space from Quantum Mechanics.László B. Szabados - 2022 - Foundations of Physics 52 (5):1-34.
    The spin geometry theorem of Penrose is extended from SU to E invariant elementary quantum mechanical systems. Using the natural decomposition of the total angular momentum into its spin and orbital parts, the distance between the centre-of-mass lines of the elementary subsystems of a classical composite system can be recovered from their relative orbital angular momenta by E-invariant classical observables. Motivated by this observation, an expression for the ‘empirical distance’ between the elementary subsystems of a composite quantum mechanical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  71
    Prospects for realism in quantum mechanics.J. R. Lucas - 1995 - International Studies in the Philosophy of Science 9 (3):225 – 234.
    Abstract Quantum mechanics has seemed to defy all attempts to construe it realistically, but antirealism, like the many?worlds hypothesis, is even more difficult to accept. In order to give a realist construal of quantum mechanics, we need first to distinguish the objective and rational aspect of reality from the paradigmatic thing?like aspects of having determinate physical properties: quantum?mechanical entities may be real in the former sense though not in the latter. Anti?realist arguments are based on (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  42. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  43.  18
    The new quantum mechanics.George Birtwistle - 1928 - Cambridge [Eng.]: University Press.
    George Birtwistle (1877–1929) published The New Quantum Mechanics in 1928. His stated aim was to give a detailed account of work which had brought the relatively new subject of quantum mechanics to the fore in the previous few years. The earlier chapters give a restatement of Alfred Landé's theory of multiplets which reconciles it with the new mechanics which follow. Later chapters present the matrix theory of Heisenberg, the q-number theory of Dirac and the wave (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. The history of quantum mechanics as a decisive argument favoring Einstein over lorentz.R. M. Nugayev - 1985 - Philosophy of Science 52 (1):44-63.
    PHILOSOPHY OF SCIENCE, vol. 52, number 1, pp.44-63. R.M. Nugayev, Kazan State |University, USSR. -/- THE HISTORY OF QUANTUM THEORY AS A DECISIVE ARGUMENT FAVORING EINSTEIN OVER LJRENTZ. -/- Abstract. Einstein’s papers on relativity, quantum theory and statistical mechanics were all part of a single research programme ; the aim was to unify mechanics and electrodynamics. It was this broader program – which eventually split into relativistic physics and quantummmechanics – that superseded Lorentz’s theory. The (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  45. Causal inference in quantum mechanics: A reassessment.Mauricio Suárez - 2007 - In Federica Russo & Jon Williamson, Causality and Probability in the Sciences. College Publications. pp. 65-106.
    There has been an intense discussion, albeit largely an implicit one, concerning the inference of causal hypotheses from statistical correlations in quantum mechanics ever since John Bell’s first statement of his notorious theorem in 1966. As is well known, its focus has mainly been the so-called Einstein-Podolsky-Rosen (“EPR”) thought experiment, and the ensuing observed correlations in real EPR like experiments. But although implicitly the discussion goes as far back as Bell’s work, it is only in the last two (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  46.  28
    The Determinacy Problem in Quantum Mechanics.Cristian Mariani - 2024 - Foundations of Physics 54 (6):1-19.
    Of the many ways of getting at the core of the weirdnesses in quantum mechanics, there’s one which traces back to Schrödinger’s seminal 1935 paper, and has to do with the apparent fuzzy nature of the reality described by the formalism through the wavefunction $$\psi$$ ψ. This issue, which I will be calling the Determinacy Problem, is distinct from the standard measurement problem of quantum mechanics, despite Schrödinger himself ends up conflating the two. I will argue (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    Quantum mechanics and experience -- The wave function: ontic vs epistemic -- The nomological view -- Reality of the wave function -- Origin of the Schrödinger equation -- The ontology of quantum mechanics (I) -- The ontology of quantum mechanics (II) -- Implications for solving the measurement problem -- Quantum ontology and relativity.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  48. Not Just Many Worlds but Many Universes? A Problem for the Many Worlds View of Quantum Mechanics.Peter Baumann - 2022 - Metaphysica 23 (2):295-305.
    The many-worlds view is one of the most discussed “interpretations” of quantum mechanics. As is well known, this view has some very controversial and much discussed aspects. This paper focuses on one particular problem arising from the combination of quantum mechanics with Special Relativity. It turns out that the ontology of the many-worlds view – the account of what there is and what branches of the universe exist – is relative to inertial frames. If one (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  13
    Epistemic–Pragmatist Interpretations of Quantum Mechanics: A Comparative Assessment.Ali Barzegar & Daniele Oriti - 2024 - Foundations of Physics 54 (5):1-34.
    In this paper, we investigate similarities and differences between the main neo-Copenhagen (or “epistemic–pragmatist”) interpretations of quantum mechanics, here identified as those defined by the rejection of an ontological nature of the quantum states and the simultaneous avoidance of hidden variables, while maintaining the quantum formalism unchanged. We argue that there is a single general interpretive framework in which the core claims that the various interpretations in the class are committed to, and which they emphasize to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  65
    Contextual semantics in quantum mechanics from a categorical point of view.Vassilios Karakostas & Elias Zafiris - 2017 - Synthese 194 (3).
    The category-theoretic representation of quantum event structures provides a canonical setting for confronting the fundamental problem of truth valuation in quantum mechanics as exemplified, in particular, by Kochen–Specker’s theorem. In the present study, this is realized on the basis of the existence of a categorical adjunction between the category of sheaves of variable local Boolean frames, constituting a topos, and the category of quantum event algebras. We show explicitly that the latter category is equipped with an (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 972