Results for ' géométrie algébrique'

942 found
Order:
  1. La géométrie algébrique. Recherches historiques, coll. « Sciences dans l'histoire ».Christian Houzel, Roshdi Rashed & Albert Blanchard - 2004 - Revue Philosophique de la France Et de l'Etranger 194 (2):242-243.
     
    Export citation  
     
    Bookmark  
  2.  36
    Christian Houzel. La géométrie algébrique: Recherches historiques. Preface by, Roshdi Rashed. v + 365 pp., bibl., index. Paris: Albert Blanchard, 2003. €68 ; €52. [REVIEW]Jeremy Gray - 2004 - Isis 95 (2):279-279.
  3.  14
    Géométrie, Mesure du Monde: Philosophie, Architecture, Urbain.Thierry Paquot & Christiane Younès (eds.) - 2005 - La Découverte.
    Les architectures molles, sculptées, transparentes, immatérielles prétendent se libérer des contraintes géométriques, comme si la géométrie ne revendiquait que la droite et la forme orthogonale ou le cercle! Certains architectes s'abandonnent aux " hasards " informatiques et construisent des édifices à la géométrie chahutée par un logiciel. Des urbanistes opposent encore le plan radioconcentrique au plan en damier en ce qui concerne l'expansion des villes et, refusant d'imaginer d'autres morphologies, laissent faire la promotion immobilière, les opportunités foncières et (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  30
    Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Fontanari Toffoli - 2024 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive conception (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  24
    Structure et substructure de la géométrie.Samuel Gagnebin - 1957 - Dialectica 11 (3‐4):405-433.
    RésuméDans l'article qui précède, l'auteur s'efforce, à l'intention surtout de ceux qui enseignent les Eléments, de mettre en lumière la signification et l'importance de deux ouvrages concernant la géométrie. Le court écrit de M. G. Bouligand fait apparaǐtre la structure algébrique et logique de cette science et présente une ȧxiomatique introduisant les notions d'ensemble et de groupe de transformation. Ainsi s'élabore une classification progressive des problèmes selon le genre des solutions qui leur conviennent. Le livre beaucoup plus étendu (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  28
    From the Intractable to the Undetermined : Between Calculus and Geometry, Leibnizian Thoughts on ⁰⁄₀ (1700-1706). [REVIEW]Sandra Bella - 2021 - Philosophia Scientiae 25:21-45.
    Leibniz introduit l’expression « ⁰⁄₀ » en 1672 dans un écrit mathématique sur les séries numériques pour exprimer la somme des unités. Il s’agit très probablement d’une des premières apparitions de cette expression dans l’histoire des mathématiques. Leibniz cependant l’abandonne aussitôt. Elle apparaît à nouveau dans le contexte du calcul différentiel au moment où celui-ci fait débat à l’Académie royale des sciences. Une des questions les plus saillantes soulevées par l’introduction du nouveau calcul est de savoir si la notion de (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  62
    Le pragmatisme peircéen, la théorie des catégories et le programme de Thiel.Ralf Krömer - 2005 - Philosophia Scientiae 9 (2):79-96.
    La théorie des catégories vaut tant par ses applications mathématiques que par les débats philosophiques qu’elle suscite. Elle sert à exprimer en topologie algébrique, à déduire en algèbre homologique et, en tant qu’alternative à la théorie des ensembles, à construire des objets en géométrie algébrique dans la conception de Grothendieck. La théorie des catégories est une discipline fondamentale en le sens de Christian Thiel, car elle traite d’opérations typiques de la mathématique de structures. Cette thèse est défendue (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  8.  45
    La vision unificatrice de Grothendieck : au-delà de l’unité (méthodologique?) des mathématiques de Lautman.Mathieu Bélanger - 2010 - Philosophiques 37 (1):169-187.
    Dans sa thèse complémentaire intitulée « Essai sur l’unité des sciences mathématiques dans leur développement actuel » Albert Lautman analysa la question de l’unité des mathématiques en considérant différentes paires antithétiques de concepts mathématiques, notamment le continu et le discret. Dans le cadre de sa refonte de la géométrie algébrique abstraite, le mathématicien français Alexandre Grothendieck considéra également l’opposition traditionnelle du continu et du discret selon un cadre conceptuel fort similaire à celui de Lautman. En comparaison, l’introduction du (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  9.  34
    H. G. Grassmann et l’introduction d’une nouvelle discipline mathématique : l’Ausdehnungslehre.Dominique Flament - 2005 - Philosophia Scientiae:81-141.
    Grassmann n’est pas le premier à créer un nouveau calcul :Möbius, Hamilton, Bellavitis, Cauchy, et bien d’autres l’ont précédé dans cette voie qui témoigne de toute l’importance des mutations subies par l’algèbre et de l’évolution des rapports complexes entretenus entre ce domaine et son « exacte contrepartie » la Géométrie euclidienne : à l’heure où s’élaborent les premières « structures » et les « morphismes », la géométrie euclidienne perd son statut de « critère de vérité » et (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  10
    Langage, visibilité, différence: histoire du discours mathématique de l''ge classique au XIXème siècle.Lucien Vinciguerra - 1999 - Vrin.
    Que lisaient les mathematiciens classiques dans une figure de geometrie, une courbe, un tableau de nombres, une combinaison de signes algebriques? En interrogeant le rapport de ce qui se lit et de ce qui se voit dans les textes mathematiques, cet ouvrage decouvre, entre l'age classique et le XIXe siecle, une transformation de la rationalite plus profonde qu'on a coutume de le penser. Entre la geometrie de Descartes, les series de Leibniz et Bernoulli, la theorie des fonctions chez Euler et (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  11.  12
    Descartes, d'Un Lieu à Un Autre.Solange Gonzalez - 2006 - Arguments.
    La notion de lieu occupe dans le système cartésien une place stratégique : elle en manifeste la singularité tant dans le domaine de la physique que dans celui de la métaphysique. En physique, les difficultés sont nombreuses : comment Descartes parvient-il à édifier une philosophie naturelle qui produit, notamment, les lois du choc et celle de la chute des graves, dans un cadre conceptuel qui nie l'existence du vide ainsi que celle de lieux différents? Jusqu'à quel point peut-on parler d'une (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  27
    The intuitions of higher dimensional algebra for the study of structured space.Ronald Brown & Timothy Porter - 2003 - Revue de Synthèse 124 (1):173-203.
    Les algèbres de dimensions supérieures libèrent les mathématiques de la restriction d'une notation purement linéaire. Elles aident ainsi à la modélisation de la géométrie et procurent une meilleure compréhension et plus de possibilités pour les calculs. Elles nous donnent de nouveaux outils pour l'étude de problèmes non-commutatifs, de dimension supérieure qui assurent le passage du local au global, en utilisant la notion d' «inverse algébrique de subdivision». Nous allons exposer comment ces idées sont venues aux auteurs en prolongeant (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  9
    Kant et les mathématiques: la conception kantienne des mathématiques.Frank Pierobon - 2003 - Vrin.
    La conception qu'Emmanuel Kant se faisait des mathematiques etait en parfaite consonance avec l'opinion philosophique la plus courante au XVIIIe siecle a l'egard de cette science. Il conviendrait par consequent de tenir davantage compte de l'histoire des idees scientifiques, ce qui permettrait de faire remarquer que la pensee kantienne releve d'un paradigme scientifique plus ancien, celui de la geometrie euclidienne (ou l'image reste intimement articulee au signe), alors que les critiques ordinairement adressees au Kant mathematicien s'appuient indirectement sur l'heritage de (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Harald Schwaetzer.Bunte Geometrie - 2009 - In Klaus Reinhardt, Harald Schwaetzer & Franz-Bernhard Stammkötter, Heymericus de Campo: Philosophie Und Theologie Im 15. Jahrhundert. Roderer. pp. 28--183.
    No categories
     
    Export citation  
     
    Bookmark  
  15. Vigier III.Spin Foam Spinors & Fundamental Space-Time Geometry - 2000 - Foundations of Physics 30 (1).
  16.  12
    D'Erehwon à l'Antre du Cyclope.Géométrie de L'Incommunicable & La Folie - 1988 - In Barry Smart, Michel Foucault: critical assessments. New York: Routledge.
    Direct download  
     
    Export citation  
     
    Bookmark  
  17. Instruction to Authors 279–283 Index to Volume 20 285–286.Christian Lotz, Corinne Painter, Sebastian Luft, Harry P. Reeder, Semantic Texture, Luciano Boi, Questions Regarding Husserlian Geometry, James R. Mensch & Postfoundational Phenomenology Husserlian - 2004 - Husserl Studies 20:285-286.
     
    Export citation  
     
    Bookmark  
  18.  16
    Sacred geometry: your personal guide.Bernice Cockram - 2020 - New York, NY: Wellfleet Press.
    With In Focus Sacred Geometry, learn the fascinating history behind this ancient tradition as well as how to decipher the geometrical symbols, formulas, and patterns based on mathematical patterns. People have searched for the meaning behind mathematical patterns for thousands of years. At its core, sacred geometry seeks to find the universal patterns that are found and applied to the objects surrounding us, such as the designs found in temples, churches, mosques, monuments, art, architecture, and nature. Learn the fundamental principles (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  46
    Structures algébriques dynamiques, espaces topologiques sans points et programme de Hilbert.Henri Lombardi - 2006 - Annals of Pure and Applied Logic 137 (1-3):256-290.
    A possible relevant meaning of Hilbert’s program is the following one: “give a constructive semantic for classical mathematics”. More precisely, give a systematic interpretation of classical abstract proofs about abstract objects, as constructive proofs about constructive versions of these objects.If this program is fulfilled we are able “at the end of the tale” to extract constructive proofs of concrete results from classical abstract proofs of these results.Dynamical algebraic structures or geometric theories seem to be a good tool for doing this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon, Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The spatial content of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  21.  79
    Projective Geometry in Logical Space: Rethinking Tractarian Thoughts.Pablo Acuña - 2017 - International Journal of Philosophical Studies 26 (1):1-23.
    Customary interpretations state that Tractarian thoughts are pictures, and, a fortiori, facts. I argue that important difficulties are unavoidable if we assume this standard view, and I propose a reading of the concept taking advantage of an analogy that Wittgenstein introduces, namely, the analogy between thoughts and projective geometry. I claim that thoughts should be understood neither as pictures nor as facts, but as acts of geometric projection in logical space. The interpretation I propose thus removes the root of the (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  22. Core Knowledge of Geometry in an Amazonian Indigene Group.Stanislas Dehaene, Véronique Izard, Pierre Pica & Elizabeth Spelke - 2006 - Science 311 (5759)::381-4.
    Does geometry constitues a core set of intuitions present in all humans, regarless of their language or schooling ? We used two non verbal tests to probe the conceptual primitives of geometry in the Munduruku, an isolated Amazonian indigene group. Our results provide evidence for geometrical intuitions in the absence of schooling, experience with graphic symbols or maps, or a rich language of geometrical terms.
    Direct download  
     
    Export citation  
     
    Bookmark   52 citations  
  23.  61
    The geometry of state space.M. Adelman, J. V. Corbett & C. A. Hurst - 1993 - Foundations of Physics 23 (2):211-223.
    The geometry of the state space of a finite-dimensional quantum mechanical system, with particular reference to four dimensions, is studied. Many novel features, not evident in the two-dimensional space of a single spin, are found. Although the state space is a convex set, it is not a ball, and its boundary contains mixed states in addition to the pure states, which form a low-dimensional submanifold. The appropriate language to describe the role of the observer is that of flag manifolds.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  25. Imagination, Geometry, and Substance Dualism in Descartes's Rules.Michael Barnes Norton - 2010 - Gnosis 11 (3):1-19.
    In his Rules for the Direction of the Mind, Descartes elevates arithmetic and geometry to the status of paradigms for all the sciences, because of the potential for certainty in their results. This emphasis on certainty is present throughout the Cartesian corpus, but in the Rules and other early works the substance dualism characteristic of Cartesian philosophy is not as obvious. However, when several key concepts from this early work are considered together, it becomes clear that Cartesian dualism necessarily follows. (...)
     
    Export citation  
     
    Bookmark  
  26.  45
    Geometry and chronometry in philosophical perspective.Adolf Grünbaum - 1968 - Minneapolis,: University of Minnesota Press.
    Geometry and Chronometry in Philosophical Perspective was first published in 1968. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. In this volume Professor Grünbaum substantially extends and comments upon his essay "Geometry, Chronometry, and Empiricism," which was first published in Volume III of the Minnesota Studies in the Philosophy of Science. Commenting on the essay when it first appeared J. J. C. Smart wrote (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  27. The geometry of standard deontic logic.Alessio Moretti - 2009 - Logica Universalis 3 (1):19-57.
    Whereas geometrical oppositions (logical squares and hexagons) have been so far investigated in many fields of modal logic (both abstract and applied), the oppositional geometrical side of “deontic logic” (the logic of “obligatory”, “forbidden”, “permitted”, . . .) has rather been neglected. Besides the classical “deontic square” (the deontic counterpart of Aristotle’s “logical square”), some interesting attempts have nevertheless been made to deepen the geometrical investigation of the deontic oppositions: Kalinowski (La logique des normes, PUF, Paris, 1972) has proposed a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  28.  88
    Finsler Geometry and Relativistic Field Theory.R. G. Beil - 2003 - Foundations of Physics 33 (7):1107-1127.
    Finsler geometry on the tangent bundle appears to be applicable to relativistic field theory, particularly, unified field theories. The physical motivation for Finsler structure is conveniently developed by the use of “gauge” transformations on the tangent space. In this context a remarkable correspondence of metrics, connections, and curvatures to, respectively, gauge potentials, fields, and energy-momentum emerges. Specific relativistic electromagnetic metrics such as Randers, Beil, and Weyl can be compared.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  29
    (1 other version)Geometrie und materie — ist einsteins vision übertragbar auf die elementarteilchenphysik?Wolfgang Drechsler - 1984 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 15 (1):1-21.
    Summary The philosophical implications associated with the choice of a particular geometry required for the formulation of a dynamics at subnuclear distances are discussed. A dualism between geometry and matter — the former identified with a fiber bundle of Cartan type raised over space-time, the latter represented by a generalized quantum mechanical wave function — is presented as a possible framework for the dynamics of strongly interacting particles at distances of 10-13 cm.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  28
    Space, Geometry, and Kant's Transcendental Deduction of the Categories.Thomas C. Vinci - 2014 - New York, US: Oup Usa.
    Thomas C. Vinci argues that Kant's Deductions demonstrate Kant's idealist doctrines and have the structure of an inference to the best explanation for correlated domains. With the Deduction of the Categories the correlated domains are intellectual conditions and non-geometrical laws of the empirical world. With the Deduction of the Concepts of Space, the correlated domains are the geometry of pure objects of intuition and the geometry of empirical objects.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31.  52
    Geometry of Forking in Simple Theories.Assaf Peretz - 2006 - Journal of Symbolic Logic 71 (1):347 - 359.
    We investigate the geometry of forking for SU-rank 2 elements in supersimple ω-categorical theories and prove stable forking and some structural properties for such elements. We extend this analysis to the case of SU-rank 3 elements.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Linguistic Geometry and its Applications.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose we have two linguistic points as tall (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  15
    Geometrie.Jens Lemanski - 2018 - In Daniel Schubbe & Matthias Koßler, Schopenhauer-Handbuch: Leben – Werk – Wirkung. Springer. pp. 330–335.
    In mathematics textbooks and special mathematical treatises, themes and theses of Arthur Schopenhauer's elementary geometry appear again and again. Since Schopenhauer's geometry or philosophy of geometry was considered exemplary in the 19th and early 20th centuries in its relation to figures and thus to the intuition, the two-hundred-year reception history sketched in this paper also follows the evaluation of intuition-related geometries, which depends on the mathematical paradigms.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  17
    Population Geometries of Europe: The Topologies of Data Cubes and Grids.Evelyn Ruppert & Francisca Grommé - 2020 - Science, Technology, and Human Values 45 (2):235-261.
    The political integration of the European Union is fragile for many reasons, not least the reassertion of nationalism. That said, if we examine specific practices and infrastructures, a more complicated story emerges. We juxtapose the political fragility of the EU in relation to the ongoing formation of data infrastructures in official statistics that take part in postnational enactments of Europe’s populations and territories. We develop this argument by analyzing transformations in how European populations are enacted through new technological infrastructures that (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  35. Natural Geometry in Descartes and Kepler.Gary Hatfield - 2015 - Res Philosophica 92 (1):117-148.
    According to Kepler and Descartes, the geometry of the triangle formed by the two eyes when focused on a single point affords perception of the distance to that point. Kepler characterized the processes involved as associative learning. Descartes described the processes as a “ natural geometry.” Many interpreters have Descartes holding that perceivers calculate the distance to the focal point using angle-side-angle, calculations that are reduced to unnoticed mental habits in adult vision. This article offers a purely psychophysiological interpretation of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  36.  9
    Geometry and Induction.Jean Nicod - 1970
    Direct download  
     
    Export citation  
     
    Bookmark   25 citations  
  37.  11
    (1 other version)Geometrie und Erfahrung: verweiterte Fassung des Festvortrages.Albert Einstein - 1921 - Akademie der Wissenschaften, in Kommission Bei W. De Gruyter.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   46 citations  
  38.  31
    Differential Geometry, the Informational Surface and Oceanic Art: The Role of Pattern in Knowledge Economies.Susanne Küchler - 2017 - Theory, Culture and Society 34 (7-8):75-97.
    Graphic pattern (e.g. geometric design) and number-based code (e.g. digital sequencing) can store and transmit complex information more efficiently than referential modes of representation. The analysis of the two genres and their relation to one another has not advanced significantly beyond a general classification based on motion-centred geometries of symmetry. This article examines an intriguing example of patchwork coverlets from the maritime societies of Oceania, where information referencing a complex genealogical system is lodged in geometric designs. By drawing attention to (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  19
    The geometry of burning mirrors in Greek antiquity. Analysis, heuristic, projections, lemmatic fragmentation.Fabio Acerbi - 2011 - Archive for History of Exact Sciences 65 (5):471-497.
    The article analyzes in detail the assumptions and the proofs typical of the research field of the geometry of burning mirrors. It emphasizes the role of two propositions of the Archimedean Quadratura parabolae, never brought to bear on this subject, and of a complex system of projections reducing a sumptōma of a parabola to some specific linear lemmas. On the grounds of this case-study, the much-debated problem of the heuristic role of analysis is also discussed.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Euclidean Geometry is a Priori.Boris Culina - manuscript
    An argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modeling, not the world, but our activities in the world.
    Direct download  
     
    Export citation  
     
    Bookmark  
  41.  25
    Geometrie da vedere.Ugo Savardi - 2011 - Rivista di Estetica 48:153-173.
    Spatial perception and spatial representation are not less central to experimental psychology than to visual art. Geometry allows their description and formalization. Therefore, geometrical language can be considered as a kind of generative grammar, which is embedded in the human perceptual experience of space. The paper outlines the suggestion that Euclidean geometry, along with most perspective geometries, even when applied to geometrical problem solving, have phenomenal bases, since they emerge from direct experience of the world, and not necessarily from higher (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  27
    Sémantique algébrique ďun système logique basé sur un ensemble ordonné fini.Abir Nour - 1999 - Mathematical Logic Quarterly 45 (4):457-466.
    In order to modelize the reasoning of an intelligent agent represented by a poset T, H. Rasiowa introduced logic systems called “Approximation Logics”. In these systems a set of constants constitutes a fundamental tool. In this papers, we consider logic systems called L′T without this kind of constants but limited to the case where T is a finite poset. We prove a weak deduction theorem. We introduce also an algebraic semantics using Hey ting algebra with operators. To prove the completeness (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  27
    Quantum geometry, logic and probability.Shahn Majid - 2020 - Philosophical Problems in Science 69:191-236.
    Quantum geometry on a discrete set means a directed graph with a weight associated to each arrow defining the quantum metric. However, these ‘lattice spacing’ weights do not have to be independent of the direction of the arrow. We use this greater freedom to give a quantum geometric interpretation of discrete Markov processes with transition probabilities as arrow weights, namely taking the diffusion form ∂+f = f for the graph Laplacian Δθ, potential functions q, p built from the probabilities, and (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  44.  73
    Signatures of Noncommutative Geometry in Muon Decay for Nonsymmetric Gravity.Dinesh Singh, Nader Mobed & Pierre-Philippe Ouimet - 2010 - Foundations of Physics 40 (12):1789-1799.
    It is shown how to identify potential signatures of noncommutative geometry within the decay spectrum of a muon in orbit near the event horizon of a microscopic Schwarzschild black hole. This possibility follows from a re-interpretation of Moffat’s nonsymmetric theory of gravity, first published in Phys. Rev. D 19:3554, 1979, where the antisymmetric part of the metric tensor manifests the hypothesized noncommutative geometric structure throughout the manifold. It is further shown that for a given sign convention, the predicted signatures counteract (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  45.  18
    Geometrie.Jens Lemanski - 2018 - In Daniel Schubbe & Matthias Koßler, Schopenhauer-Handbuch: Leben – Werk – Wirkung. Springer. pp. 329-333.
    In Mathematiklehrbüchern und mathematischen Spezialabhandlungen tauchen bis heute immer wieder Themen und Thesen der Schopenhauerschen Elementargeometrie auf. Da Schopenhauers Geometrie bzw. Philosophie der Geometrie in ihrer Figuren- und damit Anschauungsbezogenheit im 19. und frühen 20. Jahrhundert exemplarisch galt, folgt die hier skizzenhaft dargestellte zweihundertjährige Rezeptionsgeschichte auch der von den mathematischen Paradigmen abhängenden Bewertung anschauungsbezogener Geometrien.
    Direct download  
     
    Export citation  
     
    Bookmark  
  46. Geometry and Monadology: Leibniz’s Analysis Situs and Philosophy of Space.Vincenzo De Risi - 2007 - Boston: Birkhäuser.
    This book reconstructs, both from the historical and theoretical points of view, Leibniz's geometrical studies, focusing in particular on the research Leibniz ...
    Direct download  
     
    Export citation  
     
    Bookmark   32 citations  
  47.  7
    Advances in Geometry and Lie Algebras from Supergravity.Pietro Giuseppe Frè - 2018 - Cham: Imprint: Springer.
    This book aims to provide an overview of several topics in advanced Differential Geometry and Lie Group Theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  48. Kant on geometry and spatial intuition.Michael Friedman - 2012 - Synthese 186 (1):231-255.
    I use recent work on Kant and diagrammatic reasoning to develop a reconsideration of central aspects of Kant’s philosophy of geometry and its relation to spatial intuition. In particular, I reconsider in this light the relations between geometrical concepts and their schemata, and the relationship between pure and empirical intuition. I argue that diagrammatic interpretations of Kant’s theory of geometrical intuition can, at best, capture only part of what Kant’s conception involves and that, for example, they cannot explain why Kant (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  49.  43
    Des fondements de la géométrie: A propos d'un livre de M. Russell.H. Poincarè - 1899 - Revue de Métaphysique et de Morale 7 (3):251 - 279.
  50.  46
    The Ethics of Geometry: A Genealogy of Modernity.David Rapport Lachterman - 1989 - Routledge.
    The Ethics of Geometry is a study of the relationship between philosophy and mathematics. Essential differences in the ethos of mathematics, for example, the customary ways of undertaking and understanding mathematical procedures and their objects, provide insight into the fundamental issues in the quarrel of moderns with ancients. Two signal features of the modern ethos are the priority of problem-solving over theorem-proving, and the claim that constructability by human minds or instruments establishes the existence of relevant entities. These figures are (...)
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
1 — 50 / 942