Results for ' intuitionistic arithmetic'

964 found
Order:
  1.  72
    Metamathematical investigation of intuitionistic arithmetic and analysis.Anne S. Troelstra - 1973 - New York,: Springer.
  2.  15
    Correction to: What is Intuitionistic Arithmetic?V. Alexis Peluce - 2024 - Erkenntnis 89 (8):3377-3377.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3.  36
    What is Intuitionistic Arithmetic?V. Alexis Peluce - 2024 - Erkenntnis 89 (8):3351-3376.
    L.E.J. Brouwer famously took the subject’s intuition of time to be foundational and from there ventured to build up mathematics. Despite being largely critical of formal methods, Brouwer valued axiomatic systems for their use in both communication and memory. Through the Dutch Mathematical Society, Gerrit Mannoury posed a challenge in 1927 to provide an axiomatization of intuitionistic arithmetic. Arend Heyting’s 1928 axiomatization was chosen as the winner and has since enjoyed the status of being the _de facto_ formalization (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4. Classical arithmetic as part of intuitionistic arithmetic.Michael Potter - 1998 - Grazer Philosophische Studien 55 (1):127-41.
    Argues that classical arithmetic can be viewed as a proper part of intuitionistic arithmetic. Suggests that this largely neutralizes Dummett's argument for intuitionism in the case of arithmetic.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  5. Transfer principles in nonstandard intuitionistic arithmetic.Jeremy Avigad & Jeffrey Helzner - 2002 - Archive for Mathematical Logic 41 (6):581-602.
    Using a slight generalization, due to Palmgren, of sheaf semantics, we present a term-model construction that assigns a model to any first-order intuitionistic theory. A modification of this construction then assigns a nonstandard model to any theory of arithmetic, enabling us to reproduce conservation results of Moerdijk and Palmgren for nonstandard Heyting arithmetic. Internalizing the construction allows us to strengthen these results with additional transfer rules; we then show that even trivial transfer axioms or minor strengthenings of (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  6.  39
    Transfer principles in nonstandard intuitionistic arithmetic.Jeremy Avigad & Jeremy Helzner - 2002 - Archive for Mathematical Logic 41 (6):581-602.
    Using a slight generalization, due to Palmgren, of sheaf semantics, we present a term-model construction that assigns a model to any first-order intuitionistic theory. A modification of this construction then assigns a nonstandard model to any theory of arithmetic, enabling us to reproduce conservation results of Moerdijk and Palmgren for nonstandard Heyting arithmetic. Internalizing the construction allows us to strengthen these results with additional transfer rules; we then show that even trivial transfer axioms or minor strengthenings of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  7. Minimal realizability of intuitionistic arithmetic and elementary analysis.Zlatan Damnjanovic - 1995 - Journal of Symbolic Logic 60 (4):1208-1241.
    A new method of "minimal" realizability is proposed and applied to show that the definable functions of Heyting arithmetic (HA)--functions f such that HA $\vdash \forall x\exists!yA(x, y)\Rightarrow$ for all m, A(m, f(m)) is true, where A(x, y) may be an arbitrary formula of L(HA) with only x, y free--are precisely the provably recursive functions of the classical Peano arithmetic (PA), i.e., the $ -recursive functions. It is proved that, for prenex sentences provable in HA, Skolem functions may (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  8. Relativized realizability in intuitionistic arithmetic of all finite types.Nicolas D. Goodman - 1978 - Journal of Symbolic Logic 43 (1):23-44.
  9.  46
    A generalization of conservativity theorem for classical versus intuitionistic arithmetic.Stefano Berardi - 2004 - Mathematical Logic Quarterly 50 (1):41.
    A basic result in intuitionism is Π02-conservativity. Take any proof p in classical arithmetic of some Π02-statement , with P decidable). Then we may effectively turn p in some intuitionistic proof of the same statement. In a previous paper [1], we generalized this result: any classical proof p of an arithmetical statement ∀x.∃y.P, with P of degree k, may be effectively turned into some proof of the same statement, using Excluded Middle only over degree k formulas. When k (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10.  43
    Implicational complexity in intuitionistic arithmetic.Daniel Leivant - 1981 - Journal of Symbolic Logic 46 (2):240-248.
  11.  58
    Interpretations of Kleene's metamathematical predicate γ∣a in intuitionistic arithmetic.T. Thacher Robinson - 1965 - Journal of Symbolic Logic 30 (2):140-154.
  12.  75
    Substitutions of Σ10-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic.Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1-3):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  13.  32
    Forcing and satisfaction in Kripke models of intuitionistic arithmetic.Maryam Abiri, Morteza Moniri & Mostafa Zaare - 2019 - Logic Journal of the IGPL 27 (5):659-670.
    We define a class of first-order formulas $\mathsf{P}^{\ast }$ which exactly contains formulas $\varphi$ such that satisfaction of $\varphi$ in any classical structure attached to a node of a Kripke model of intuitionistic predicate logic deciding atomic formulas implies its forcing in that node. We also define a class of $\mathsf{E}$-formulas with the property that their forcing coincides with their classical satisfiability in Kripke models which decide atomic formulas. We also prove that any formula with this property is an (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  18
    Revisiting the conservativity of fixpoints over intuitionistic arithmetic.Mattias Granberg Olsson & Graham E. Leigh - 2023 - Archive for Mathematical Logic 63 (1):61-87.
    This paper presents a novel proof of the conservativity of the intuitionistic theory of strictly positive fixpoints, $$\widehat{{\textrm{ID}}}{}_{1}^{{\textrm{i}}}{}$$ ID ^ 1 i, over Heyting arithmetic ($${\textrm{HA}}$$ HA ), originally proved in full generality by Arai (Ann Pure Appl Log 162:807–815, 2011. https://doi.org/10.1016/j.apal.2011.03.002). The proof embeds $$\widehat{{\textrm{ID}}}{}_{1}^{{\textrm{i}}}{}$$ ID ^ 1 i into the corresponding theory over Beeson’s logic of partial terms and then uses two consecutive interpretations, a realizability interpretation of this theory into the subtheory generated by almost negative (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  34
    Independence results for weak systems of intuitionistic arithmetic.Morteza Moniri - 2003 - Mathematical Logic Quarterly 49 (3):250.
    This paper proves some independence results for weak fragments of Heyting arithmetic by using Kripke models. We present a necessary condition for linear Kripke models of arithmetical theories which are closed under the negative translation and use it to show that the union of the worlds in any linear Kripke model of HA satisfies PA. We construct a two-node PA-normal Kripke structure which does not force iΣ2. We prove i∀1 ⊬ i∃1, i∃1 ⊬ i∀1, iΠ2 ⊬ iΣ2 and iΣ2 (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  53
    Epistemic arithmetic is a conservative extension of intuitionistic arithmetic.Nicolas D. Goodman - 1984 - Journal of Symbolic Logic 49 (1):192-203.
  17.  19
    Finite sets and infinite sets in weak intuitionistic arithmetic.Takako Nemoto - 2020 - Archive for Mathematical Logic 59 (5-6):607-657.
    In this paper, we consider, for a set \ of natural numbers, the following notions of finitenessFIN1:There are a natural number l and a bijection f between \\);FIN5:It is not the case that \\), and infinitenessINF1:There are not a natural number l and a bijection f between \\);INF5:\\). In this paper, we systematically compare them in the method of constructive reverse mathematics. We show that the equivalence among them can be characterized by various combinations of induction axioms and non-constructive principles, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  61
    Intuitionistic weak arithmetic.Morteza Moniri - 2003 - Archive for Mathematical Logic 42 (8):791-796.
    We construct ω-framed Kripke models of i∀1 and iΠ1 non of whose worlds satisfies ∀x∃y(x=2y∨x=2y+1) and ∀x,y∃zExp(x, y, z) respectively. This will enable us to show that i∀1 does not prove ¬¬∀x∃y(x=2y∨x=2y+1) and iΠ1 does not prove ¬¬∀x, y∃zExp(x, y, z). Therefore, i∀1⊬¬¬lop and iΠ1⊬¬¬iΣ1. We also prove that HA⊬lΣ1 and present some remarks about iΠ2.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19.  47
    Intuitionistic sets and numbers: small set theory and Heyting arithmetic.Stewart Shapiro, Charles McCarty & Michael Rathjen - forthcoming - Archive for Mathematical Logic.
    It has long been known that (classical) Peano arithmetic is, in some strong sense, “equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including choice) in which the axiom of infinity is replaced by its negation. The intended model of the latter is the set of hereditarily finite sets. The connection between the theories is so tight that they may be taken as notational variants of each other. Our purpose here is to develop and establish a constructive version of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20. Stewart Shapiro. Introduction—intensional mathematics and constructive mathematics. Intensional mathematics, edited by Stewart Shapiro, Studies in logic and the foundations of mathematics, vol. 113, North-Holland, Amsterdam, New York, and Oxford, 1985, pp. 1–10. - Stewart Shapiro. Epistemic and intuitionistic arithmetic. Intensional mathematics, edited by Stewart Shapiro, Studies in logic and the foundations of mathematics, pp. 11–46. - John Myhill. Intensional set theory. Intensional mathematics, edited by Stewart Shapiro, Studies in logic and the foundations of mathematics, pp. 47–61. - Nicolas D. Goodman. A genuinely intensional set theory. Intensional mathematics, edited by Stewart Shapiro, Studies in logic and the foundations of mathematics, pp. 63–79. - Andrej Ščedrov. Extending Godel's modal interpretation to type theory and set theory. Intensional mathematics, edited by Stewart Shapiro, Studies in logic and the foundations of mathematics, pp. 81–119. - Robert C. Flagg. Church's. [REVIEW]Craig A. Smorynski - 1991 - Journal of Symbolic Logic 56 (4):1496-1499.
  21.  25
    (1 other version)Troelstra A. S.. Notions of realizability for intuitionistic arithmetic and intuitionistic arithmetic in all finite types. Proceedings of the Second Scandinavian Logic Symposium, edited by Fenstad J. E., North-Holland Publishing Company, Amsterdam and London 1971, pp. 369–405. [REVIEW]C. Smorynski - 1975 - Journal of Symbolic Logic 40 (4):625-625.
  22. Some models for intuitionistic finite type arithmetic with Fan functional.A. S. Troelstra - 1977 - Journal of Symbolic Logic 42 (2):194-202.
    In this note we shall assume acquaintance with [T4] and the parts of [T1] which deal with intuitionistic arithmetic in all finite types. The bibliography just continues the bibliography of [T4].The principal purpose of this note is the discussion of two models for intuitionistic finite type arithmetic with fan functional. The first model is needed to correct an oversight in the proof of Theorem 6 [T4, §5]: the model ECF+as defined there cannot be shown to have (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23.  10
    Encoding true second‐order arithmetic in the real‐algebraic structure of models of intuitionistic elementary analysis.Miklós Erdélyi-Szabó - 2021 - Mathematical Logic Quarterly 67 (3):329-341.
    Based on the paper [4] we show that true second‐order arithmetic is interpretable over the real‐algebraic structure of models of intuitionistic analysis built upon a certain class of complete Heyting algebras.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  69
    Intuitionistic Remarks on Husserl’s Analysis of Finite Number in the Philosophy of Arithmetic.Mark van Atten - 2004 - Graduate Faculty Philosophy Journal 25 (2):205-225.
    Brouwer and Husserl both aimed to give a philosophical account of mathematics. They met in 1928 when Husserl visited the Netherlands to deliver his Amsterdamer Vorträge. Soon after, Husserl expressed enthusiasm about this meeting in a letter to Heidegger, and he reports that they had long conversations which, for him, had been among the most interesting events in Amsterdam. However, nothing is known about the content of these conversations; and it is not clear whether or not there were any other (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  76
    Classical and Intuitionistic Models of Arithmetic.Kai F. Wehmeier - 1996 - Notre Dame Journal of Formal Logic 37 (3):452-461.
    Given a classical theory T, a Kripke model K for the language L of T is called T-normal or locally PA just in case the classical L-structure attached to each node of K is a classical model of T. Van Dalen, Mulder, Krabbe, and Visser showed that Kripke models of Heyting Arithmetic (HA) over finite frames are locally PA, and that Kripke models of HA over frames ordered like the natural numbers contain infinitely many PA-nodes. We show that Kripke (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  26.  67
    Arithmetical necessity, provability and intuitionistic logic.Rob Goldblatt - 1978 - Theoria 44 (1):38-46.
  27.  35
    A model for intuitionistic non-standard arithmetic.Ieke Moerdijk - 1995 - Annals of Pure and Applied Logic 73 (1):37-51.
    This paper provides an explicit description of a model for intuitionistic non-standard arithmetic, which can be formalized in a constructive metatheory without the axiom of choice.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  28. Some strongly undecidable natural arithmetical problems, with an application to intuitionistic theories.Panu Raatikainen - 2003 - Journal of Symbolic Logic 68 (1):262-266.
    A natural problem from elementary arithmetic which is so strongly undecidable that it is not even Trial and Error decidable (in other words, not decidable in the limit) is presented. As a corollary, a natural, elementary arithmetical property which makes a difference between intuitionistic and classical theories is isolated.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  29.  32
    Polynomial induction and length minimization in intuitionistic bounded arithmetic.Morteza Moniri - 2005 - Mathematical Logic Quarterly 51 (1):73-76.
    It is shown that the feasibly constructive arithmetic theory IPV does not prove LMIN, unless the polynomial hierarchy CPV-provably collapses. It is proved that PV plus LMIN intuitionistically proves PIND. It is observed that PV + PIND does not intuitionistically prove NPB, a scheme which states that the extended Frege systems are not polynomially bounded.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  26
    Intuitionistic Choice and Restricted Classical Logic.Ulrich Kohlenbach - 2001 - Mathematical Logic Quarterly 47 (4):455-460.
    Recently, Coquand and Palmgren considered systems of intuitionistic arithmetic in a finite types together with various forms of the axiom of choice and a numerical omniscience schema which implies classical logic for arithmetical formulas. Feferman subsequently observed that the proof theoretic strength of such systems can be determined by functional interpretation based on a non-constructive μ-operator and his well-known results on the strength of this operator from the 70's. In this note we consider a weaker form LNOS of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  31.  53
    A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic.Takako Nemoto & Sato Kentaro - 2022 - Journal of Symbolic Logic 87 (2):437-497.
    We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with$\textbf {PRA}$or consistent provably in$\textbf {PRA}$) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  32.  56
    Provably total functions of intuitionistic bounded arithmetic.Victor Harnik - 1992 - Journal of Symbolic Logic 57 (2):466-477.
  33.  23
    Conservation Theorems on Semi-Classical Arithmetic.Makoto Fujiwara & Taishi Kurahashi - 2023 - Journal of Symbolic Logic 88 (4):1469-1496.
    We systematically study conservation theorems on theories of semi-classical arithmetic, which lie in-between classical arithmetic $\mathsf {PA}$ and intuitionistic arithmetic $\mathsf {HA}$. Using a generalized negative translation, we first provide a structured proof of the fact that $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ where ${\Sigma _k}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$. In addition, we show that this conservation theorem (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  26
    Non-commutative classical arithmetical sequent calculi are intuitionistic.Revantha Ramanayake - 2016 - Logic Journal of the IGPL 24 (3):441-452.
  35.  21
    Two General Results on Intuitionistic Bounded Theories.Fernando Ferreira - 1999 - Mathematical Logic Quarterly 45 (3):399-407.
    We study, within the framework of intuitionistic logic, two well-known general results of bounded arithmetic. Firstly, Parikh's theorem on the existence of bounding terms for the provably total functions. Secondly, the result which states that adding the scheme of bounded collection to bounded theories does not yield new II2 consequences.
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  34
    Intuitionistic Fixed Point Theories for Strictly Positive Operators.Christian Rüede & Thomas Strahm - 2002 - Mathematical Logic Quarterly 48 (2):195-202.
    In this paper it is shown that the intuitionistic fixed point theory equation image for α times iterated fixed points of strictly positive operator forms is conservative for negative arithmetic and equation image sentences over the theory equation image for α times iterated arithmetic comprehension without set parameters. This generalizes results previously due to Buchholz [5] and Arai [2].
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  37.  26
    (1 other version)Arithmetic complexity of the predicate logics of certain complete arithmetic theories.Valery Plisko - 2001 - Annals of Pure and Applied Logic 113 (1-3):243-259.
    It is proved in this paper that the predicate logic of each complete constructive arithmetic theory T having the existential property is Π1T-complete. In this connection, the techniques of a uniform partial truth definition for intuitionistic arithmetic theories is used. The main theorem is applied to the characterization of the predicate logic corresponding to certain variant of the notion of realizable predicate formula. Namely, it is shown that the set of irrefutable predicate formulas is recursively isomorphic to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  38.  10
    Intuitionism. [REVIEW]P. J. M. - 1966 - Review of Metaphysics 20 (1):153-153.
    Heyting is considered to be the first individual to place the previously informal logic of the Intuitionist movement on a rigorous formal foundation; he is probably the most likely candidate one might select for a book about Intuitionism. The first edition appeared in 1956, and the revisions have been brief. Only the seventh of eight sections deals with the Intuitionistic formulation of sentential and predicate logics; the first chapter is in the form of a dialogue among an Intuitonist [[sic]], (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  26
    Intuitionistic formal theories with realizability in subrecursive classes.Anatoly Petrovich Beltiukov - 1997 - Annals of Pure and Applied Logic 89 (1):3-15.
    A family of formal intuitionistic theories is proposed with realizability of proved formulas in several subrecursive classes, e.g. Grzegorczyk classes, polynomial-time computable functions class, etc. xA) Algorithm extraction forxyA is shown for various classes of bounded complexity. The results on polynomial computability are closely connected to work on the Bounded Arithmetic by S. Buss.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40.  42
    (1 other version)The geometrical basis of arithmetical knowledge: Frege & Dehaene.Sorin Costreie - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):361-370.
    Frege writes in Numbers and Arithmetic about kindergarten-numbers and “an a priori mode of cognition” that they may have “a geometrical source.” This resembles recent findings on arithmetical cognition. In my paper, I explore this resemblance between Gottlob Frege’s later position concerning the geometrical source of arithmetical knowledge, and some current positions in the literature dedicated to arithmetical cognition, especially that of Stanislas Dehaene. In my analysis, I shall try to mainly see to what extent logicism is compatible with (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  93
    In defense of epistemic arithmetic.Leon Horsten - 1998 - Synthese 116 (1):1-25.
    This paper presents a defense of Epistemic Arithmetic as used for a formalization of intuitionistic arithmetic and of certain informal mathematical principles. First, objections by Allen Hazen and Craig Smorynski against Epistemic Arithmetic are discussed and found wanting. Second, positive support is given for the research program by showing that Epistemic Arithmetic can give interesting formulations of Church's Thesis.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  42.  89
    Minimal models of Heyting arithmetic.Ieke Moerdijk & Erik Palmgren - 1997 - Journal of Symbolic Logic 62 (4):1448-1460.
    In this paper, we give a constructive nonstandard model of intuitionistic arithmetic (Heyting arithmetic). We present two axiomatisations of the model: one finitary and one infinitary variant. Using the model these axiomatisations are proven to be conservative over ordinary intuitionistic arithmetic. The definition of the model along with the proofs of its properties may be carried out within a constructive and predicative metatheory (such as Martin-Löf's type theory). This paper gives an illustration of the use (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  43.  43
    Extracting Algorithms from Intuitionistic Proofs.Fernando Ferreira & António Marques - 1998 - Mathematical Logic Quarterly 44 (2):143-160.
    This paper presents a new method - which does not rely on the cut-elimination theorem - for characterizing the provably total functions of certain intuitionistic subsystems of arithmetic. The new method hinges on a realizability argument within an infinitary language. We illustrate the method for the intuitionistic counterpart of Buss's theory Smath image, and we briefly sketch it for the other levels of bounded arithmetic and for the theory IΣ1.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  58
    (1 other version)Fragments of Heyting arithmetic.Wolfgang Burr - 2000 - Journal of Symbolic Logic 65 (3):1223-1240.
    We define classes Φnof formulae of first-order arithmetic with the following properties:(i) Everyφϵ Φnis classically equivalent to a Πn-formula (n≠ 1, Φ1:= Σ1).(ii)(iii)IΠnandiΦn(i.e., Heyting arithmetic with induction schema restricted to Φn-formulae) prove the same Π2-formulae.We further generalize a result by Visser and Wehmeier. namely that prenex induction within intuitionistic arithmetic is rather weak: After closing Φnboth under existential and universal quantification (we call these classes Θn) the corresponding theoriesiΘnstill prove the same Π2-formulae. In a second part (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  45.  35
    Intuitionistic Open Induction and Least Number Principle and the Buss Operator.Mohammad Ardeshir & Mojtaba Moniri - 1998 - Notre Dame Journal of Formal Logic 39 (2):212-220.
    In "Intuitionistic validity in -normal Kripke structures," Buss asked whether every intuitionistic theory is, for some classical theory , that of all -normal Kripke structures for which he gave an r.e. axiomatization. In the language of arithmetic and denote PA plus Open Induction or Open LNP, and are their intuitionistic deductive closures. We show is recursively axiomatizable and , while . If proves PEM but not totality of a classically provably total Diophantine function of , then (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  46.  95
    Intuitionists are not (turing) machines.Crispin Wright - 1995 - Philosophia Mathematica 3 (1):86-102.
    Lucas and Penrose have contended that, by displaying how any characterisation of arithmetical proof programmable into a machine allows of diagonalisation, generating a humanly recognisable proof which eludes that characterisation, Gödel's incompleteness theorem rules out any purely mechanical model of the human intellect. The main criticisms of this argument have been that the proof generated by diagonalisation (i) will not be humanly recognisable unless humans can grasp the specification of the object-system (Benacerraf); and (ii) counts as a proof only on (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  47.  70
    (2 other versions)A negationless interpretation of intuitionistic theories. I.Victor N. Krivtsov - 2000 - Studia Logica 64 (3):323-344.
    The present work contains an axiomatic treatment of some parts of the restricted version of intuitionistic mathematics advocated by G. F. C. Griss, also known as negationless intuitionistic mathematics.Formal systems NPC, NA, and FIMN for negationless predicate logic, arithmetic, and analysis are proposed. Our Theorem 4 in Section 2 asserts the translatability of Heyting's arithmetic HAinto NA. The result can in fact be extended to a large class of intuitionistic theories based on HAand their negationless (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  48.  27
    Exploring Computational Contents of Intuitionist Proofs.Geiza Hamazaki da Silva, Edward Haeusler & Paulo Veloso - 2005 - Logic Journal of the IGPL 13 (1):69-93.
    One of the main problems in computer science is to ensure that programs are implemented in such a way that they satisfy a given specification. There are many studies about methods to prove correctness of programs. This work presents a method, belonging to the constructive synthesis or proofs-as-programs paradigm, that comes from the Curry-Howard isomorphism and extracts the computational contents of intuitionist proofs. The synthesis process proposed produces a program in an imperative language from a proof in many-sorted intuitionist logic, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  49.  19
    A note on uniform density in weak arithmetical theories.Duccio Pianigiani & Andrea Sorbi - 2020 - Archive for Mathematical Logic 60 (1):211-225.
    Answering a question raised by Shavrukov and Visser :569–582, 2014), we show that the lattice of \-sentences ) over any computable enumerable consistent extension T of \ is uniformly dense. We also show that for every \ and \ refer to the known hierarchies of arithmetical formulas introduced by Burr for intuitionistic arithmetic) the lattices of \-sentences over any c.e. consistent extension T of the intuitionistic version of Robinson Arithmetic \ are uniformly dense. As an immediate (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  25
    Arithmetic Formulated Relevantly.Robert Meyer - 2021 - Australasian Journal of Logic 18 (5):154-288.
    The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that it is trivial that relevant arithmetic is absolutely consistent, but classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under, I shall show in particular that 0 = 1 is a non-theorem of relevant arithmetic; this, of course, is exactly (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 964