Abstract
We systematically study conservation theorems on theories of semi-classical arithmetic, which lie in-between classical arithmetic $\mathsf {PA}$ and intuitionistic arithmetic $\mathsf {HA}$. Using a generalized negative translation, we first provide a structured proof of the fact that $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ where ${\Sigma _k}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$. In addition, we show that this conservation theorem is optimal in the sense that for any semi-classical arithmetic T, if $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over T, then ${T}$ proves ${\Sigma _k}\text {-}\mathrm {LEM}$. In the same manner, we also characterize conservation theorems for other well-studied classes of formulas by fragments of classical axioms or rules. This reveals the entire structure of conservation theorems with respect to the arithmetical hierarchy of classical principles.