Results for ' pentagon lattice'

963 found
Order:
  1.  13
    The Pentagon as a Substructure Lattice of Models of Peano Arithmetic.James H. Schmerl - forthcoming - Journal of Symbolic Logic:1-20.
    Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  32
    Infinite substructure lattices of models of Peano Arithmetic.James H. Schmerl - 2010 - Journal of Symbolic Logic 75 (4):1366-1382.
    Bounded lattices (that is lattices that are both lower bounded and upper bounded) form a large class of lattices that include all distributive lattices, many nondistributive finite lattices such as the pentagon lattice N₅, and all lattices in any variety generated by a finite bounded lattice. Extending a theorem of Paris for distributive lattices, we prove that if L is an ℵ₀-algebraic bounded lattice, then every countable nonstandard model ������ of Peano Arithmetic has a cofinal elementary (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  19
    Some observations on the substructure lattice of a 1 ultrapower.Thomas G. McLaughlin - 2010 - Mathematical Logic Quarterly 56 (3):323-330.
    Given a Δ1 ultrapower ℱ/[MATHEMATICAL SCRIPT CAPITAL U], let ℒU denote the set of all Π2-correct substructures of ℱ/[MATHEMATICAL SCRIPT CAPITAL U]; i.e., ℒU is the collection of all those subsets of |ℱ/[MATHEMATICAL SCRIPT CAPITAL U]| that are closed under computable functions. Defining in the obvious way the lattice ℒ) with domain ℒU, we obtain some preliminary results about lattice embeddings into – or realization as – an ℒ. The basis for these results, as far as we take (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  47
    Quantum information traced back to ancient Egyptian mysteries.Renate Quehenberger - 2013 - Technoetic Arts 11 (3):319-334.
    There are strong indications that ancient Egyptian mythology contains knowledge of the nature of space up to higher dimensions and provides ontologic answers to the question about the creation of matter. This article examines the pentagonal interpretation of the myth of Isis and Osiris by comparing the iconographic details with recent findings from the art research project Quantum Cinema, where an interdisciplinary group of digital artists and scientists established a virtual space model for visualizing the usually non-perceivable processes in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  14
    Departamento de Fisica, Facultad de Ciencias Universidad de Oviedo E-33007, Oviedo, Spain.A. Realistic Interpretation of Lattice Gauge - 1995 - In M. Ferrero & Alwyn van der Merwe (eds.), Fundamental Problems in Quantum Physics. Springer. pp. 177.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  38
    Lattice Logic, Bilattice Logic and Paraconsistent Quantum Logic: a Unified Framework Based on Monosequent Systems.Norihiro Kamide - 2021 - Journal of Philosophical Logic 50 (4):781-811.
    Lattice logic, bilattice logic, and paraconsistent quantum logic are investigated based on monosequent systems. Paraconsistent quantum logic is an extension of lattice logic, and bilattice logic is an extension of paraconsistent quantum logic. Monosequent system is a sequent calculus based on the restricted sequent that contains exactly one formula in both the antecedent and succedent. It is known that a completeness theorem with respect to a lattice-valued semantics holds for a monosequent system for lattice logic. A (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  66
    Residuated Lattices: An Algebraic Glimpse at Substructural Logics.Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski & Hiroakira Ono - 2007 - Elsevier.
    This is also where we begin investigating lattices of logics and varieties, rather than particular examples.
    Direct download  
     
    Export citation  
     
    Bookmark   73 citations  
  8.  80
    Lattices of Fixed Points of Fuzzy Galois Connections.Radim Bělohlávek - 2001 - Mathematical Logic Quarterly 47 (1):111-116.
    We give a characterization of the fixed points and of the lattices of fixed points of fuzzy Galois connections. It is shown that fixed points are naturally interpreted as concepts in the sense of traditional logic.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  45
    The Lattice of Subvarieties of the Variety Defined by Externally Compatible Identities of Abelian Groups of Exponent n.Katarzyna Gajewska-Kurdziel & Krystyna Mruczek-Nasieniewska - 2007 - Studia Logica 85 (3):361-379.
    The lattices of varieties were studied in many works (see [4], [5], [11], [24], [31]). In this paper we describe the lattice of all subvarieties of the variety $G_{Ex}^n$ defined by so called externally compatible identities of Abelian groups and the identity xⁿ ≈ yxⁿ. The notation in this paper is the same as in [2].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  20
    PC-lattices: A Class of Bounded BCK-algebras.Sadegh Khosravi Shoar, Rajab Ali Borzooei, R. Moradian & Atefe Radfar - 2018 - Bulletin of the Section of Logic 47 (1):33-44.
    In this paper, we define the notion of PC-lattice, as a generalization of finite positive implicative BCK-algebras with condition and bounded commutative BCK-algebras. We investiate some results for Pc-lattices being a new class of BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and we show that if X is a PC-lattice with condition S, then X is an involutory BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove that any (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11.  35
    Congruence Lattices of Semilattices with Operators.Jennifer Hyndman, J. B. Nation & Joy Nishida - 2016 - Studia Logica 104 (2):305-316.
    The duality between congruence lattices of semilattices, and algebraic subsets of an algebraic lattice, is extended to include semilattices with operators. For a set G of operators on a semilattice S, we have \ \cong^{d} {{\rm S}_{p}}}\), where L is the ideal lattice of S, and H is a corresponding set of adjoint maps on L. This duality is used to find some representations of lattices as congruence lattices of semilattices with operators. It is also shown that these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  55
    BK-lattices. Algebraic Semantics for Belnapian Modal Logics.Sergei P. Odintsov & E. I. Latkin - 2012 - Studia Logica 100 (1-2):319-338.
    Earlier algebraic semantics for Belnapian modal logics were defined in terms of twist-structures over modal algebras. In this paper we introduce the class of BK -lattices, show that this class coincides with the abstract closure of the class of twist-structures, and it forms a variety. We prove that the lattice of subvarieties of the variety of BK -lattices is dually isomorphic to the lattice of extensions of Belnapian modal logic BK . Finally, we describe invariants determining a twist-structure (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  13.  35
    The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  14.  32
    Lattice representations for computability theory.Peter A. Fejer - 1998 - Annals of Pure and Applied Logic 94 (1-3):53-74.
    Lattice representations are an important tool for computability theorists when they embed nondistributive lattices into degree-theoretic structures. In this expository paper, we present the basic definitions and results about lattice representations needed by computability theorists. We define lattice representations both from the lattice-theoretic and computability-theoretic points of view, give examples and show the connection between the two types of representations, discuss some of the known theorems on the existence of lattice representations that are of interest (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15.  26
    Lattice BCK logics with Modus Ponens as unique rule.Joan Gispert & Antoni Torrens - 2014 - Mathematical Logic Quarterly 60 (3):230-238.
    Lattice BCK logic is the expansion of the well known Meredith implicational logic BCK expanded with lattice conjunction and disjunction. Although its natural axiomatization has three rules named modus ponens, ∨‐rule and ∧‐rule, we show that we can give an equivalent presentation with just modus ponens and ∧‐rule, however it is impossible to obtain an equivalent presentation with modus ponens as unique rule. In this paper we study and characterize all axiomatic extensions of lattice BCK logic with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. Supermodular Lattices.Iqbal Unnisa, W. B. Vasantha Kandasamy & Florentin Smarandache - 2012 - Columbus, OH, USA: Educational Publisher.
    In lattice theory the two well known equational class of lattices are the distributive lattices and the modular lattices. All distributive lattices are modular however a modular lattice in general is not distributive. In this book, new classes of lattices called supermodular lattices and semi-supermodular lattices are introduced and characterized.
     
    Export citation  
     
    Bookmark  
  17.  16
    The lattice of envy-free many-to-many matchings with contracts.Agustin G. Bonifacio, Nadia Guiñazú, Noelia Juarez, Pablo Neme & Jorge Oviedo - 2023 - Theory and Decision 96 (1):113-134.
    We study envy-free allocations in a many-to-many matching model with contracts in which agents on one side of the market (doctors) are endowed with substitutable choice functions and agents on the other side of the market (hospitals) are endowed with responsive preferences. Envy-freeness is a weakening of stability that allows blocking contracts involving a hospital with a vacant position and a doctor that does not envy any of the doctors that the hospital currently employs. We show that the set of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  18
    The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic Bd.Gemma Robles & José M. Méndez - 2024 - Logic Journal of the IGPL 32 (3):493-516.
    The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with |$\wedge $|⁠, |$\vee $| and |$\sim $| as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B|$^{\textrm {d}}$|⁠. It is to be noted that Boolean negation (so, classical propositional (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  44
    Lattice initial segments of the hyperdegrees.Richard A. Shore & Bjørn Kjos-Hanssen - 2010 - Journal of Symbolic Logic 75 (1):103-130.
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, $\scr{D}_{h}$ . In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable, locally finite lattice) is isomorphic to an initial segment of $\scr{D}_{h}$ . Corollaries include the decidability of the two quantifier theory of $\scr{D}_{h}$ and the undecidability of its three quantifier theory. The key tool in the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  28
    The lattice of normal modal logics (preliminary report).Wolfgang Rautenberg - 1977 - Bulletin of the Section of Logic 6 (4):193-199.
    Most material below is ranked around the splittings of lattices of normal modal logics. These splittings are generated by nite subdirect irreducible modal algebras. The actual computation of the splittings is often a rather delicate task. Rened model structures are very useful to this purpose, as well as they are in many other respects. E.g. the analysis of various lattices of extensions, like ES5, ES4:3 etc becomes rather simple, if rened structures are used. But this point will not be touched (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  10
    Substructure lattices and almost minimal end extensions of models of Peano arithmetic.James H. Schmerl - 2004 - Mathematical Logic Quarterly 50 (6):533-539.
    This paper concerns intermediate structure lattices Lt, where [MATHEMATICAL SCRIPT CAPITAL N] is an almost minimal elementary end extension of the model ℳ of Peano Arithmetic. For the purposes of this abstract only, let us say that ℳ attains L if L ≅ Lt for some almost minimal elementary end extension of [MATHEMATICAL SCRIPT CAPITAL N]. If T is a completion of PA and L is a finite lattice, then: If some model of T attains L, then every countable (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  19
    The Pentagon Of Screens. A Taxonomy Inspired By The Actor-Network Theory.Laurent Jullier - 2014 - Rivista di Estetica 55:123-138.
    The main purpose of this essay is to build a taxonomy of screens, inspired by Michel Callon’s and Bruno Latour’s Actor-Network Theory. Five fields are considered. Importing a model from the field of epistemology (1) screens will be seen as lenses; importing a model from the field of fictional narratives (2) screens will be seen as doors; importing a model from the field of art (3) screens will be seen as picture-hanging systems; importing a model from the field of reading (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  18
    Asymmetric pentagonal cluster on an Al–Cu–Co quasicrystal surface.R. Zenkyu, T. Matsui, A. P. Tsai & J. Yuhara - 2011 - Philosophical Magazine 91 (19-21):2854-2861.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  21
    Automorphisms of the lattice of recursively enumerable sets.Peter Cholak - 1995 - Providence, RI: American Mathematical Society.
    Chapter 1: Introduction. S = <{We}c<w; C,U,n,0,w> is the substructure formed by restricting the lattice <^P(w); C , U, n,0,w> to the re subsets We of the ...
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  25.  17
    Lattice-ordered reduced special groups.M. Dickmann, M. Marshall & F. Miraglia - 2005 - Annals of Pure and Applied Logic 132 (1):27-49.
    Special groups [M. Dickmann, F. Miraglia, Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., vol. 689, Amer. Math. Soc., Providence, RI, 2000] are a first-order axiomatization of the theory of quadratic forms. In Section 2 we investigate reduced special groups which are a lattice under their natural representation partial order ; we show that this lattice property is preserved under most of the standard constructions on RSGs; in particular finite RSGs and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  26.  27
    Lattices in Locally Definable Subgroups of $langleR^{n},+rangle$.Pantelis E. Eleftheriou & Ya’Acov Peterzil - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):449-461.
    Let $\mathcal{M}$ be an o-minimal expansion of a real closed field $R$. We define the notion of a lattice in a locally definable group and then prove that every connected, definably generated subgroup of $\langle R^{n},+\rangle$ contains a definable generic set and therefore admits a lattice.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  74
    A lattice for the language of Aristotle's syllogistic and a lattice for the language of Vasiľév's syllogistic.Andrew Schumann - 2006 - Logic and Logical Philosophy 15 (1):17-37.
    In this paper an algebraic system of the new type is proposed (namely, a vectorial lattice). This algebraic system is a lattice for the language of Aristotle’s syllogistic and as well as a lattice for the language of Vasiľév’s syllogistic. A lattice for the language of Aristotle’s syllogistic is called a vectorial lattice on cap-semilattice and a lattice for the language of Vasiľév’s syllogistic is called a vectorial lattice on closure cap-semilattice. These constructions (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  31
    Traces, traceability, and lattices of traces under the set theoretic inclusion.Gunther Mainhardt - 2013 - Archive for Mathematical Logic 52 (7-8):847-869.
    Let a trace be a computably enumerable set of natural numbers such that V[m]={n:〈n,m〉∈V}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V^{[m]} = \{n : \langle n, m\rangle \in V \}}$$\end{document} is finite for all m, where 〈.,.〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle^{.},^{.}\rangle}$$\end{document} denotes an appropriate pairing function. After looking at some basic properties of traces like that there is no uniform enumeration of all traces, we prove varied results on traceability and variants thereof, where (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  27
    Polymodal Lattices and Polymodal Logic.John L. Bell - 1996 - Mathematical Logic Quarterly 42 (1):219-233.
    A polymodal lattice is a distributive lattice carrying an n-place operator preserving top elements and certain finite meets. After exploring some of the basic properties of such structures, we investigate their freely generated instances and apply the results to the corresponding logical systems — polymodal logics — which constitute natural generalizations of the usual systems of modal logic familiar from the literature. We conclude by formulating an extension of Kripke semantics to classical polymodal logic and proving soundness and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  37
    A lattice-valued set theory.Satoko Titani - 1999 - Archive for Mathematical Logic 38 (6):395-421.
    A lattice-valued set theory is formulated by introducing the logical implication $\to$ which represents the order relation on the lattice.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  31.  48
    Lattice theory, quadratic spaces, and quantum proposition systems.Robert Piziak - 1990 - Foundations of Physics 20 (6):651-665.
    A quadratic space is a generalization of a Hilbert space. The geometry of certain kinds of subspaces (“closed,” “splitting,” etc.) is approached from the purely lattice theoretic point of view. In particular, theorems of Mackey and Kaplansky are given purely lattice theoretic proofs. Under certain conditions, the lattice of “closed” elements is a quantum proposition system (i.e., a complete orthomodular atomistic lattice with the covering property).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  30
    The lattice of Belnapian modal logics: Special extensions and counterparts.Sergei P. Odintsov & Stanislav O. Speranski - 2016 - Logic and Logical Philosophy 25 (1):3-33.
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these classes; • associating with every Belnapian modal logic its explosive, complete and classical counterparts. We investigate the relationships between special (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  33.  10
    Introduction to Lattices and Order.B. A. Davey & H. A. Priestley - 2002 - Cambridge University Press.
    This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   109 citations  
  34.  2
    Concept lattice formalisms of Hébert’s “semic analysis” and “analysis by classification”.Michael D. Fowler - 2024 - Semiotica 2024 (261):25-59.
    In this article we provide a mathematical frame to the generation of class taxonomies suggested by Hébert in his analysis of the poem > (‘A Sorry Business!’) by Gilles Vigneault (b. 1928) as well as a formalization of the structure of semic isotopies in his reading of The golden ship by Émile Nelligan (1879–1941). We also examine the characteristics of inter- and intra-semic molecules at work within Réne Magritte’s painting La clef des songes. Our mathematical frame is Ganter and Wille’s (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  51
    Lattices of Theories in Languages without Equality.J. B. Nation - 2013 - Notre Dame Journal of Formal Logic 54 (2):167-175.
    If $\mathbf{S}$ is a semilattice with operators, then there is an implicational theory $\mathscr{Q}$ such that the congruence lattice $\operatorname{Con}$ is isomorphic to the lattice of all implicational theories containing $\mathscr{Q}$.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  36.  34
    Lattices of Finitely Alternative Normal Tense Logics.Minghui Ma & Qian Chen - 2021 - Studia Logica 109 (5):1093-1118.
    A finitely alternative normal tense logic \ is a normal tense logic characterized by frames in which every point has at most n future alternatives and m past alternatives. The structure of the lattice \\) is described. There are \ logics in \\) without the finite model property, and only one pretabular logic in \\). There are \ logics in \\) which are not finitely axiomatizable. For \, there are \ logics in \\) without the FMP, and infinitely many (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  33
    The lattice structure of the S-Lorenz core.Vincent Iehlé - 2015 - Theory and Decision 78 (1):141-151.
    For any TU game and any ranking of players, the set of all preimputations compatible with the ranking, equipped with the Lorenz order, is a bounded join semi-lattice. Furthermore, the set admits as sublattice the S-Lorenz core intersected with the region compatible with the ranking. This result uncovers a new property about the structure of the S-Lorenz core. As immediate corollaries, we obtain complementary results to the findings of Dutta and Ray :403–422, 1991), by showing that any S-constrained egalitarian (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  62
    Compatibility and accessibility: lattice representations for semantics of non-classical and modal logics.Wesley Holliday - 2022 - In David Fernández Duque & Alessandra Palmigiano (eds.), Advances in Modal Logic, Vol. 14. College Publications. pp. 507-529.
    In this paper, we study three representations of lattices by means of a set with a binary relation of compatibility in the tradition of Ploščica. The standard representations of complete ortholattices and complete perfect Heyting algebras drop out as special cases of the first representation, while the second covers arbitrary complete lattices, as well as complete lattices equipped with a negation we call a protocomplementation. The third topological representation is a variant of that of Craig, Haviar, and Priestley. We then (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  40
    Distributive Lattices with a Negation Operator.Sergio Arturo Celani - 1999 - Mathematical Logic Quarterly 45 (2):207-218.
    In this note we introduce and study algebras of type such that is a bounded distributive lattice and ⌝ is an operator that satisfies the condition ⌝ = a ⌝ b and ⌝ 0 = 1. We develop the topological duality between these algebras and Priestley spaces with a relation. In addition, we characterize the congruences and the subalgebras of such an algebra. As an application, we will determine the Priestley spaces of quasi-Stone algebras.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Neutrosophic Lattices.Vasantha Kandasamy & Florentin Smarandache - 2014 - Neutrosophic Sets and Systems 2:42-47.
    In this paper authors for the first time define a new notion called neutrosophic lattices. We define few properties related with them. Three types of neutrosophic lattices are defined and the special properties about these new class of lattices are discussed and developed. This paper is organised into three sections. First section introduces the concept of partially ordered neutrosophic set and neutrosophic lattices. Section two introduces different types of neutrosophic lattices and the final section studies neutrosophic Boolean algebras. Conclusions and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  50
    Lattice logic as a fragment of (2-sorted) residuated modal logic.Chrysafis Hartonas - 2019 - Journal of Applied Non-Classical Logics 29 (2):152-170.
    ABSTRACTCorrespondence and Shalqvist theories for Modal Logics rely on the simple observation that a relational structure is at the same time the basis for a model of modal logic and for a model of first-order logic with a binary predicate for the accessibility relation. If the underlying set of the frame is split into two components,, and, then frames are at the same time the basis for models of non-distributive lattice logic and of two-sorted, residuated modal logic. This suggests (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  42. The Pentagon Papers and U.S. Imperialism in South East Asia.Noam Chomsky - unknown
    It is fashionable today to deride the domino theory, but in fact it contains an important kernel of plausibility, perhaps truth. National independence and revolutionary social change, if successful, may very well be contagious. The problem is what Walt Rostow and others sometimes call the "ideological threat" specifically, "the possibility that the Chinese Communists can prove to Asians by progress in China that Communist methods are better and faster than democratic {6} methods".2 The State Department feared that "A fundamental source (...)
    No categories
     
    Export citation  
     
    Bookmark  
  43.  39
    Constructible lattices of c-degrees.C. P. Farrington - 1982 - Journal of Symbolic Logic 47 (4):739-754.
  44.  29
    Pentagon chain in external fields.György Kovács & Zsolt Gulácsi - 2015 - Philosophical Magazine 95 (32):3674-3695.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  45.  42
    Lattice of algebraically closed sets in one-based theories.Lee Fong Low - 1994 - Journal of Symbolic Logic 59 (1):311-321.
    Let T be a one-based theory. We define a notion of width, in the case of T having the finiteness property, for the lattice of finitely generated algebraically closed sets and prove Theorem. Let T be one-based with the finiteness property. If T is of bounded width, then every type in T is nonorthogonal to a weight one type. If T is countable, the converse is true.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  54
    Distributive lattices with an operator.Alejandro Petrovich - 1996 - Studia Logica 56 (1-2):205 - 224.
    It was shown in [3] (see also [5]) that there is a duality between the category of bounded distributive lattices endowed with a join-homomorphism and the category of Priestley spaces endowed with a Priestley relation. In this paper, bounded distributive lattices endowed with a join-homomorphism, are considered as algebras and we characterize the congruences of these algebras in terms of the mentioned duality and certain closed subsets of Priestley spaces. This enable us to characterize the simple and subdirectly irreducible algebras. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  59
    Distributive lattices with a dual homomorphic operation.Alasdair Urquhart - 1979 - Studia Logica 38 (2):201 - 209.
    The lattices of the title generalize the concept of a De Morgan lattice. A representation in terms of ordered topological spaces is described. This topological duality is applied to describe homomorphisms, congruences, and subdirectly irreducible and free lattices in the category. In addition, certain equational subclasses are described in detail.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  48.  63
    Bounded distributive lattices with strict implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
    The present paper introduces and studies the variety WH of weakly Heyting algebras. It corresponds to the strict implication fragment of the normal modal logic K which is also known as the subintuitionistic local consequence of the class of all Kripke models. The tools developed in the paper can be applied to the study of the subvarieties of WH; among them are the varieties determined by the strict implication fragments of normal modal logics as well as varieties that do not (...)
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
  49. Non-standard lattices and o-minimal groups.Pantelis E. Eleftheriou - 2013 - Bulletin of Symbolic Logic 19 (1):56-76.
    We describe a recent program from the study of definable groups in certain o-minimal structures. A central notion of this program is that of a lattice. We propose a definition of a lattice in an arbitrary first-order structure. We then use it to describe, uniformly, various structure theorems for o-minimal groups, each time recovering a lattice that captures some significant invariant of the group at hand. The analysis first goes through a local level, where a pertinent notion (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  50.  15
    Free lattices proof-theoretically.Tomasz Kowalski - 2020 - Australasian Journal of Logic 17 (2):110-122.
    A sequent system is used to give alternative proofs of two well known properties of free lattices: Whitman’s condition and semidistributivity. It demonstrates usefulness of such proof systems outside logic.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 963