Results for 'ARITHMETIC'

964 found
Order:
  1. Special Issue: Methods for Investigating Self-Referential Truth edited by Volker Halbach Volker Halbach/Editorial Introduction 3.Petr Hájek, Arithmetical Hierarchy Iii, Gerard Allwein & Wendy MacCaull - 2001 - Studia Logica 68:421-422.
  2.  28
    Huw price.Is Arithmetic Consistent & Graham Priest - 1994 - Mind 103 (411).
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  33
    Predicative arithmetic.Edward Nelson - 1986 - Princeton, N.J.: Princeton University Press.
    This book develops arithmetic without the induction principle, working in theories that are interpretable in Raphael Robinson's theory Q. Certain inductive formulas, the bounded ones, are interpretable in Q. A mathematically strong, but logically very weak, predicative arithmetic is constructed. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  4.  38
    Bounded arithmetic, propositional logic, and complexity theory.Jan Krajíček - 1995 - New York, NY, USA: Cambridge University Press.
    This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial (...)
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
  5.  15
    The arithmetic of Z-numbers: theory and applications.Rafik A. Aliev - 2015 - Chennai: World Scientific. Edited by Oleg H. Huseynov, Rashad R. Aliyev & Akif A. Alizadeh.
    Real-world information is imperfect and is usually described in natural language (NL). Moreover, this information is often partially reliable and a degree of reliability is also expressed in NL. In view of this, the concept of a Z-number is a more adequate concept for the description of real-world information. The main critical problem that naturally arises in processing Z-numbers-based information is the computation with Z-numbers. Nowadays, there is no arithmetic of Z-numbers suggested in existing literature. This book is the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  6. Arithmetical Identities in a 2-element Model of Tarski's System.Gurgen Asatryan - 2002 - Mathematical Logic Quarterly 48 (2):277-282.
    All arithmetical identities involving 1, addition, multiplication and exponentiation will be true in a 2-element model of Tarski's system if a certain sequence of natural numbers is not bounded. That sequence can be bounded only if the set of Fermat's prime numbers is finite.
     
    Export citation  
     
    Bookmark  
  7.  44
    Arithmetic with Fusions.Jeff Ketland & Thomas Schindler - 2016 - Logique Et Analyse 234:207-226.
    In this article, the relationship between second-order comprehension and unrestricted mereological fusion (over atoms) is clarified. An extension PAF of Peano arithmetic with a new binary mereological notion of “fusion”, and a scheme of unrestricted fusion, is introduced. It is shown that PAF interprets full second-order arithmetic, Z_2.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  9.  66
    Arithmetical definability over finite structures.Troy Lee - 2003 - Mathematical Logic Quarterly 49 (4):385.
    Arithmetical definability has been extensively studied over the natural numbers. In this paper, we take up the study of arithmetical definability over finite structures, motivated by the correspondence between uniform AC0 and FO. We prove finite analogs of three classic results in arithmetical definability, namely that < and TIMES can first-order define PLUS, that < and DIVIDES can first-order define TIMES, and that < and COPRIME can first-order define TIMES. The first result sharpens the equivalence FO =FO to FO = (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  10.  86
    “Strenge” arithmetics.Robert K. Meyer & Greg Restall - unknown
    In Entailment, Anderson and Belnap motivated their modification E of Ackermann’s strenge Implikation Π Π’ as a logic of relevance and necessity. The kindred system R was seen as relevant but not as modal. Our systems of Peano arithmetic R# and omega arithmetic R## were based on R to avoid fallacies of relevance. But problems arose as to which arithmetic sentences were (relevantly) true. Here we base analogous systems on E to solve those problems. Central to motivating (...)
    Direct download  
     
    Export citation  
     
    Bookmark   21 citations  
  11. Arithmetic on a Parallel Computer: Perception Versus Logic.James A. Anderson - 2003 - Brain and Mind 4 (2):169-188.
    This article discusses the properties of a controllable, flexible, hybrid parallel computing architecture that potentially merges pattern recognition and arithmetic. Humans perform integer arithmetic in a fundamentally different way than logic-based computers. Even though the human approach to arithmetic is both slow and inaccurate it can have substantial advantages when useful approximations are more valuable than high precision. Such a computational strategy may be particularly useful when computers based on nanocomponents become feasible because it offers a way (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  12. The foundations of arithmetic.Gottlob Frege - 1884/1950 - Evanston, Ill.,: Northwestern University Press.
    In arithmetic, if only because many of its methods and concepts originated in India, it has been the tradition to reason less strictly than in geometry, ...
    Direct download  
     
    Export citation  
     
    Bookmark   438 citations  
  13.  93
    Developing arithmetic in set theory without infinity: some historical remarks.Charles Parsons - 1987 - History and Philosophy of Logic 8 (2):201-213.
    In this paper some of the history of the development of arithmetic in set theory is traced, particularly with reference to the problem of avoiding the assumption of an infinite set. Although the standard method of singling out a sequence of sets to be the natural numbers goes back to Zermelo, its development was more tortuous than is generally believed. We consider the development in the light of three desiderata for a solution and argue that they can probably not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  14.  32
    Arithmetic of divisibility in finite models.A. E. Wasilewska & M. Mostowski - 2004 - Mathematical Logic Quarterly 50 (2):169.
    We prove that the finite-model version of arithmetic with the divisibility relation is undecidable . Additionally we prove FM-representability theorem for this class of finite models. This means that a relation R on natural numbers can be described correctly on each input on almost all finite divisibility models if and only if R is of degree ≤0′. We obtain these results by interpreting addition and multiplication on initial segments of finite models with divisibility only.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  26
    Arithmetic Formulated Relevantly.Robert Meyer - 2021 - Australasian Journal of Logic 18 (5):154-288.
    The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that it is trivial that relevant arithmetic is absolutely consistent, but classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under, I shall show in particular that 0 = 1 is a non-theorem of relevant arithmetic; this, of course, is exactly (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  16.  96
    Gruesome arithmetic: Kripke's sceptic replies.Barry Allen - 1989 - Dialogue 28 (2):257-264.
    Kripke's Wittgenstein on Rules and Private Language has enlivened recent discussion of Wittgenstein's later philosophy. Yet it is quite possible to disengage his interpretive thesis from its supporting argumentation. Doing so leaves one with an intriguing sceptical argument which Kripke first powerfully advances, then tries to halt. But contrary to the impression his argument may leave, Kripke's solution and the position it concedes to the Sceptic are deeply allied. Here I shall demonstrate their common assumption, and on that basis argue (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  43
    Bounded arithmetic for NC, ALogTIME, L and NL.P. Clote & G. Takeuti - 1992 - Annals of Pure and Applied Logic 56 (1-3):73-117.
    We define theories of bounded arithmetic, whose definable functions and relations are exactly those in certain complexity classes. Based on a recursion-theoretic characterization of NC in Clote , the first-order theory TNC, whose principal axiom scheme is a form of short induction on notation for nondeterministic polynomial-time computable relations, has the property that those functions having nondeterministic polynomial-time graph Θ such that TNC x y Θ are exactly the functions in NC, computable on a parallel random-access machine in polylogarithmic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  18.  45
    Arithmetic, enumerative induction and size bias.A. C. Paseau - 2021 - Synthese 199 (3-4):9161-9184.
    Number theory abounds with conjectures asserting that every natural number has some arithmetic property. An example is Goldbach’s Conjecture, which states that every even number greater than 2 is the sum of two primes. Enumerative inductive evidence for such conjectures usually consists of small cases. In the absence of supporting reasons, mathematicians mistrust such evidence for arithmetical generalisations, more so than most other forms of non-deductive evidence. Some philosophers have also expressed scepticism about the value of enumerative inductive evidence (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  19.  43
    Arithmetization and Rigor as Beliefs in the Development of Mathematics.Lorena Segura & Juan Matías Sepulcre - 2016 - Foundations of Science 21 (1):207-214.
    With the arrival of the nineteenth century, a process of change guided the treatment of three basic elements in the development of mathematics: rigour, the arithmetization and the clarification of the concept of function, categorised as the most important tool in the development of the mathematical analysis. In this paper we will show how several prominent mathematicians contributed greatly to the development of these basic elements that allowed the solid underpinning of mathematics and the consideration of mathematics as an axiomatic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  20.  51
    How Arithmetic is about Numbers. A Wittgenestinian Perspective.Felix Mühlhölzer - 2014 - Grazer Philosophische Studien 89 (1):39-59.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  25
    Presburger arithmetic, rational generating functions, and quasi-polynomials.Kevin Woods - 2015 - Journal of Symbolic Logic 80 (2):433-449.
    Presburger arithmetic is the first-order theory of the natural numbers with addition. We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, ifp= are a subset of the free variables in a Presburger formula, we can define a counting functiong to be the number of solutions to the formula, for a givenp. We show (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  8
    Relevant Arithmetic and Mathematical Pluralism.Zach Weber - 2021 - Australasian Journal of Logic 18 (5):569-596.
    In The Consistency of Arithmetic and elsewhere, Meyer claims to “repeal” Goedel’s second incompleteness theorem. In this paper, I review his argument, and then consider two ways of understanding it: from the perspective of mathematical pluralism and monism, respectively. Is relevant arithmetic just another legitimate practice among many, or is it a rival of its classical counterpart—a corrective to Goedel, setting us back on the path to the (One) True Arithmetic? To help answer, I sketch a few (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  24.  79
    Presburger arithmetic with unary predicates is Π11 complete.Joseph Y. Halpern - 1991 - Journal of Symbolic Logic 56 (2):637 - 642.
    We give a simple proof characterizing the complexity of Presburger arithmetic augmented with additional predicates. We show that Presburger arithmetic with additional predicates is Π 1 1 complete. Adding one unary predicate is enough to get Π 1 1 hardness, while adding more predicates (of any arity) does not make the complexity any worse.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  38
    Arithmetically Saturated Models of Arithmetic.Roman Kossak & James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):531-546.
    The paper presents an outline of the general theory of countable arithmetically saturated models of PA and some of its applications. We consider questions concerning the automorphism group of a countable recursively saturated model of PA. We prove new results concerning fixed point sets, open subgroups, and the cofinality of the automorphism group. We also prove that the standard system of a countable arithmetically saturated model of PA is determined by the lattice of its elementary substructures.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  26.  37
    Arithmetic and Combinatorics: Kant and His Contemporaries.Gottfried Martin - 1985 - Southern Illinois University Press.
    This is the only work to provide a histori­cal account of Kant’s theory of arith­metic, examining in detail the theories of both his predecessors and his successors.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Arithmetic, Mathematical Intuition, and Evidence.Richard Tieszen - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):28-56.
    This paper provides examples in arithmetic of the account of rational intuition and evidence developed in my book After Gödel: Platonism and Rationalism in Mathematics and Logic . The paper supplements the book but can be read independently of it. It starts with some simple examples of problem-solving in arithmetic practice and proceeds to general phenomenological conditions that make such problem-solving possible. In proceeding from elementary ‘authentic’ parts of arithmetic to axiomatic formal arithmetic, the paper exhibits (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  73
    Ordinal arithmetic and $\Sigma_{1}$ -elementarity.Timothy J. Carlson - 1999 - Archive for Mathematical Logic 38 (7):449-460.
    We will introduce a partial ordering $\preceq_1$ on the class of ordinals which will serve as a foundation for an approach to ordinal notations for formal systems of set theory and second-order arithmetic. In this paper we use $\preceq_1$ to provide a new characterization of the ubiquitous ordinal $\epsilon _{0}$.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  29. (1 other version)Relevant arithmetic.Robert Meyer - 1976 - Bulletin of the Section of Logic 5 (4):133-135.
    This is a republication of R.K. Meyer's "Relevant Arithmetic", which originally appeared in the Bulletin of the Section of Logic 5. It sets out the problems that Meyer was to work on for the next decade concerning his system, R#.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  30.  25
    Mental arithmetic.Roger Squires - 1994 - Ratio 7 (1):43-57.
    The popular idea that mental calculation involves covert operations as counterparts to the scribblings, sayings or manipulations involved in classroom calculation is rejected by familiar arguments in Section I. Philosophers do not readily agree on an alternative account. Section II considers reasons why they are puzzled, reasons which encourage a return to the discredited position. The currently fashionable Causal or Functionalist view is criticised in Section III. Section IV reconsiders the stubborn fact that when someone calculates in their head they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  38
    Arithmetical Soundness and Completeness for $$\varvec{\Sigma }_{\varvec{2}}$$ Numerations.Taishi Kurahashi - 2018 - Studia Logica 106 (6):1181-1196.
    We prove that for each recursively axiomatized consistent extension T of Peano Arithmetic and \, there exists a \ numeration \\) of T such that the provability logic of the provability predicate \\) naturally constructed from \\) is exactly \ \rightarrow \Box p\). This settles Sacchetti’s problem affirmatively.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  32.  41
    The Arithmetics of a Theory.Albert Visser - 2015 - Notre Dame Journal of Formal Logic 56 (1):81-119.
    In this paper we study the interpretations of a weak arithmetic, like Buss’s theory $\mathsf{S}^{1}_{2}$, in a given theory $U$. We call these interpretations the arithmetics of $U$. We develop the basics of the structure of the arithmetics of $U$. We study the provability logic of $U$ from the standpoint of the framework of the arithmetics of $U$. Finally, we provide a deeper study of the arithmetics of a finitely axiomatized sequential theory.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Linear arithmetic desecsed.John K. Slaney, Robert K. Meyer & Greg Restall - 1996 - Logique Et Analyse 39:379-388.
  34. Symbolic arithmetic knowledge without instruction.Camilla K. Gilmore, Shannon E. McCarthy & Elizabeth S. Spelke - unknown
    Symbolic arithmetic is fundamental to science, technology and economics, but its acquisition by children typically requires years of effort, instruction and drill1,2. When adults perform mental arithmetic, they activate nonsymbolic, approximate number representations3,4, and their performance suffers if this nonsymbolic system is impaired5. Nonsymbolic number representations also allow adults, children, and even infants to add or subtract pairs of dot arrays and to compare the resulting sum or difference to a third array, provided that only approximate accuracy is (...)
     
    Export citation  
     
    Bookmark   42 citations  
  35.  31
    Arithmetical complexity of fuzzy predicate logics — A survey II.Petr Hájek - 2010 - Annals of Pure and Applied Logic 161 (2):212-219.
    Results on arithmetical complexity of important sets of formulas of several fuzzy predicate logics are surveyed and some new results are proven.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  36.  5
    Arithmetic of divisibility in finite models.Marcin Mostowski & Anna E. Wasilewska - 2004 - Mathematical Logic Quarterly 50 (2):169-174.
    We prove that the finite‐model version of arithmetic with the divisibility relation is undecidable (more precisely, it has Π01‐complete set of theorems). Additionally we prove FM‐representability theorem for this class of finite models. This means that a relation R on natural numbers can be described correctly on each input on almost all finite divisibility models if and only if R is of degree ≤0′. We obtain these results by interpreting addition and multiplication on initial segments of finite models with (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  21
    Ordinal arithmetic based on Skolem hulling.Gunnar Wilken - 2007 - Annals of Pure and Applied Logic 145 (2):130-161.
    Taking up ordinal notations derived from Skolem hull operators familiar in the field of infinitary proof theory we develop a toolkit of ordinal arithmetic that generally applies whenever ordinal structures are analyzed whose combinatorial complexity does not exceed the strength of the system of set theory. The original purpose of doing so was inspired by the analysis of ordinal structures based on elementarity invented by T.J. Carlson, see [T.J. Carlson, Elementary patterns of resemblance, Annals of Pure and Applied Logic (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  38. Arithmetical truth and hidden higher-order concepts.Daniel Isaacson - 1987 - In Logic Colloquium '85: Proceedings of the Colloquium held in Orsay, France July 1985 (Studies in Logic and the Foundations of Mathematics, Vol. 122.). Amsterdam, New York, Oxford, Tokyo: North-Holland. pp. 147-169.
    The incompleteness of formal systems for arithmetic has been a recognized fact of mathematics. The term “incompleteness” suggests that the formal system in question fails to offer a deduction which it ought to. This chapter focuses on the status of a formal system, Peano Arithmetic, and explores a viewpoint on which Peano Arithmetic occupies an intrinsic, conceptually well-defined region of arithmetical truth. The idea is that it consists of those truths which can be perceived directly from the (...)
     
    Export citation  
     
    Bookmark   4 citations  
  39.  21
    Predicting arithmetical achievement from neuro-psychological performance: a longitudinal study.M. Fayol - 1998 - Cognition 68 (2):B63-B70.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  40.  83
    Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  41. Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers (...)
    Direct download  
     
    Export citation  
     
    Bookmark   182 citations  
  42.  26
    (1 other version)Arithmetic complexity of the predicate logics of certain complete arithmetic theories.Valery Plisko - 2001 - Annals of Pure and Applied Logic 113 (1-3):243-259.
    It is proved in this paper that the predicate logic of each complete constructive arithmetic theory T having the existential property is Π1T-complete. In this connection, the techniques of a uniform partial truth definition for intuitionistic arithmetic theories is used. The main theorem is applied to the characterization of the predicate logic corresponding to certain variant of the notion of realizable predicate formula. Namely, it is shown that the set of irrefutable predicate formulas is recursively isomorphic to the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  43.  31
    Arithmetizing Uniform NC.Bill Allen - 1991 - Annals of Pure and Applied Logic 53 (1):1-50.
    Allen, B., Arithmetizing Uniform NC, Annals of Pure and Applied Logic 53 1–50. We give a characterization of the complexity class Uniform NC as an algebra of functions on the natural numbers which is the closure of several basic functions under composition and a schema of recursion. We then define a fragment of bounded arithmetic, and, using our characterization of Uniform NC, show that this fragment is capable of proving the totality of all of the functions in Uniform NC. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  44. Reducing Arithmetic to Set Theory.A. C. Paseau - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 35-55.
    The revival of the philosophy of mathematics in the 60s following its post-1931 slump left us with two conflicting positions on arithmetic’s ontological relationship to set theory. W.V. Quine’s view, presented in 'Word and Object' (1960), was that numbers are sets. The opposing view was advanced in another milestone of twentieth-century philosophy of mathematics, Paul Benacerraf’s 'What Numbers Could Not Be' (1965): one of the things numbers could not be, it explained, was sets; the other thing numbers could not (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  10
    Arithmetic Formulated in a Logic of Meaning Containment.Ross Brady - 2021 - Australasian Journal of Logic 18 (5):447-472.
    We assess Meyer’s formalization of arithmetic in his [21], based on the strong relevant logic R and compare this with arithmetic based on a suitable logic of meaning containment, which was developed in Brady [7]. We argue in favour of the latter as it better captures the key logical concepts of meaning and truth in arithmetic. We also contrast the two approaches to classical recapture, again favouring our approach in [7]. We then consider our previous development of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  23
    Arithmetic Errors in Financial Contexts in Parkinson’s Disease.Hannah D. Loenneker, Sara Becker, Susanne Nussbaum, Hans-Christoph Nuerk & Inga Liepelt-Scarfone - 2021 - Frontiers in Psychology 12.
    Research on dyscalculia in neurodegenerative diseases is still scarce, despite high impact on patients’ independence and activities of daily living function. Most studies address Alzheimer’s Disease; however, patients with Parkinson’s Disease also have a higher risk for cognitive impairment while the relation to arithmetic deficits in financial contexts has rarely been studied. Therefore, the current exploratory study investigates deficits in two simple arithmetic tasks in financial contexts administered within the Clinical Dementia Rating in a sample of 100 PD (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  42
    Fragments of Arithmetic and true sentences.Andrés Cordón-Franco, Alejandro Fernández-Margarit & F. Félix Lara-Martín - 2005 - Mathematical Logic Quarterly 51 (3):313-328.
    By a theorem of R. Kaye, J. Paris and C. Dimitracopoulos, the class of the Πn+1-sentences true in the standard model is the only consistent Πn+1-theory which extends the scheme of induction for parameter free Πn+1-formulas. Motivated by this result, we present a systematic study of extensions of bounded quantifier complexity of fragments of first-order Peano Arithmetic. Here, we improve that result and show that this property describes a general phenomenon valid for parameter free schemes. As a consequence, we (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  48.  28
    Axiomatizations of Peano Arithmetic: A Truth-Theoretic View.Ali Enayat & Mateusz Łełyk - 2023 - Journal of Symbolic Logic 88 (4):1526-1555.
    We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf {EA}}] +\alpha $, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  40
    Arithmetical interpretations of dynamic logic.Petr Hájek - 1983 - Journal of Symbolic Logic 48 (3):704-713.
    An arithmetical interpretation of dynamic propositional logic (DPL) is a mapping f satisfying the following: (1) f associates with each formula A of DPL a sentence f(A) of Peano arithmetic (PA) and with each program α a formula f(α) of PA with one free variable describing formally a supertheory of PA; (2) f commutes with logical connectives; (3) f([α] A) is the sentence saying that f(A) is provable in the theory f(α); (4) for each axiom A of DPL, f(A) (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  50. (1 other version)Elementary arithmetic.B. R. Buckingham - 1947 - Boston,: Ginn.
     
    Export citation  
     
    Bookmark  
1 — 50 / 964