12 found
Order:
Disambiguations
Bernhard Banaschewski [12]B. Banaschewski [5]
  1.  58
    Hüllensysteme und Erweiterung von Quasi‐Ordnungen.Bernhard Banaschewski - 1956 - Mathematical Logic Quarterly 2 (8-9):117-130.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  2.  64
    The dual Cantor-Bernstein theorem and the partition principle.Bernhard Banaschewski & Gregory H. Moore - 1990 - Notre Dame Journal of Formal Logic 31 (3):375-381.
  3.  35
    A globalisation of the Gelfand duality theorem.Bernhard Banaschewski & Christopher J. Mulvey - 2006 - Annals of Pure and Applied Logic 137 (1-3):62-103.
    In this paper we bring together results from a series of previous papers to prove the constructive version of the Gelfand duality theorem in any Grothendieck topos , obtaining a dual equivalence between the category of commutative C*-algebras and the category of compact, completely regular locales in the topos.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  4.  31
    (1 other version)Algebraic closure without choice.Bernhard Banaschewski - 1992 - Mathematical Logic Quarterly 38 (1):383-385.
    This note shows that for the proof of the existence and uniqueness of the algebraic closure of a field one needs only the Boolean Ultrafilter Theorem.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  53
    A New Proof that “Krull implies Zorn”.Bernhard Banaschewski - 1994 - Mathematical Logic Quarterly 40 (4):478-480.
    In the present note we give a direct deduction of the Axiom of Choice from the Maximal Ideal Theorem for commutative rings with unit.
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  16
    Choice Principles and Compactness Conditions.Bernhard Banaschewski - 1998 - Mathematical Logic Quarterly 44 (3):427-430.
    It is shown in Zermelo-Fraenkel Set Theory that Cκ, the Axiom of Choice for κ-indexed families of arbitrary sets, is equivalent to the condition that the frame envelope of any κ-frame is κ-Lindelöf, for any cardinal κ.
    Direct download  
     
    Export citation  
     
    Bookmark  
  7.  33
    Excluded Middle versus Choice in a topos.Bernhard Banaschewski - 2005 - Mathematical Logic Quarterly 51 (3):282.
    It is shown for an arbitrary topos that the Law of the Excluded Middle holds in its propositional logic iff it satisfies the limited choice principle that every epimorphism from 2 = 1 ⊕ 1 splits.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  35
    (1 other version)Fixpoints Without the Natural Numbers.B. Banaschewski - 1991 - Mathematical Logic Quarterly 37 (8):125-128.
  9.  87
    On Principles of Inductive Definition.Bernhard Banaschewski - 1960 - Mathematical Logic Quarterly 6 (15-22):248-257.
  10.  46
    On some Theorems Equivalent with the Axiom of Choice.Bernhard Banaschewski - 1961 - Mathematical Logic Quarterly 7 (17-18):279-282.
  11.  25
    Preface.Bernhard Banaschewski, Thierry Coquand & Giovanni Sambin - 2006 - Annals of Pure and Applied Logic 137 (1-3):1-2.
  12.  87
    On G. Spencer Brown's laws of form.B. Banaschewski - 1977 - Notre Dame Journal of Formal Logic 18 (3):507-509.