Results for 'Compact bicategories'

969 found
Order:
  1.  68
    Logic and Grammar.Joachim Lambek - 2012 - Studia Logica 100 (4):667-681.
    Grammar can be formulated as a kind of substructural propositional logic. In support of this claim, we survey bare Gentzen style deductive systems and two kinds of non-commutative linear logic: intuitionistic and compact bilinear logic. We also glance at their categorical refinements.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  94
    Compact Representations of Extended Causal Models.Joseph Y. Halpern & Christopher Hitchcock - 2013 - Cognitive Science 37 (6):986-1010.
    Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of normality. In Halpern and Hitchcock (2011), we offer a definition of actual causation using extended causal models, which include information about both causal structure and normality. Extended causal models are potentially very complex. In this study, we show how it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  3.  27
    Computably Compact Metric Spaces.Rodney G. Downey & Alexander G. Melnikov - 2023 - Bulletin of Symbolic Logic 29 (2):170-263.
    We give a systematic technical exposition of the foundations of the theory of computably compact metric spaces. We discover several new characterizations of computable compactness and apply these characterizations to prove new results in computable analysis and effective topology. We also apply the technique of computable compactness to give new and less combinatorially involved proofs of known results from the literature. Some of these results do not have computable compactness or compact spaces in their statements, and thus these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  30
    Strongly compact cardinals and ordinal definability.Gabriel Goldberg - 2023 - Journal of Mathematical Logic 24 (1).
    This paper explores several topics related to Woodin’s HOD conjecture. We improve the large cardinal hypothesis of Woodin’s HOD dichotomy theorem from an extendible cardinal to a strongly compact cardinal. We show that assuming there is a strongly compact cardinal and the HOD hypothesis holds, there is no elementary embedding from HOD to HOD, settling a question of Woodin. We show that the HOD hypothesis is equivalent to a uniqueness property of elementary embeddings of levels of the cumulative (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  19
    Compact Metrizable Structures via Projective Fraïssé Theory With an Application to the Study of Fences.Gianluca Basso - 2020 - Bulletin of Symbolic Logic 26 (3-4):299-300.
    In this dissertation we explore projective Fraïssé theory and its applications, as well as limitations, to the study of compact metrizable spaces. The goal of projective Fraïssé theory is to approximate spaces via classes of finite structures and glean topological or dynamical properties of a space by relating them to combinatorial features of the associated class of structures. Using the framework of compact metrixable structures, we establish general results which expand and help contextualize previous works in the field. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  22
    Generalized compactness of nonmonotonic inference operations.Heinrich Herre - 1995 - Journal of Applied Non-Classical Logics 5 (1):121-135.
    The aim of the present paper is to analyse compactness properties of nonmonotonic inference operations within the framework of model theory. For this purpose the concepts of a deductive frame and its semantical counterpart, a semantical frame are introduced. Compactness properties play a fundamental in the study of non-monotonic inference, and in the paper several new versions of compactness are studied.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  26
    Strong compactness and the ultrapower axiom I: the least strongly compact cardinal.Gabriel Goldberg - 2022 - Journal of Mathematical Logic 22 (2).
    Journal of Mathematical Logic, Volume 22, Issue 02, August 2022. The Ultrapower Axiom is a combinatorial principle concerning the structure of large cardinals that is true in all known canonical inner models of set theory. A longstanding test question for inner model theory is the equiconsistency of strongly compact and supercompact cardinals. In this paper, it is shown that under the Ultrapower Axiom, the least strongly compact cardinal is supercompact. A number of stronger results are established, setting the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  36
    Compactness under constructive scrutiny.Hajime Ishihara & Peter Schuster - 2004 - Mathematical Logic Quarterly 50 (6):540-550.
    How are the various classically equivalent definitions of compactness for metric spaces constructively interrelated? This question is addressed with Bishop-style constructive mathematics as the basic system – that is, the underlying logic is the intuitionistic one enriched with the principle of dependent choices. Besides surveying today's knowledge, the consequences and equivalents of several sequential notions of compactness are investigated. For instance, we establish the perhaps unexpected constructive implication that every sequentially compact separable metric space is totally bounded. As a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  9. The compactness of first-order logic:from gödel to lindström.John W. Dawson - 1993 - History and Philosophy of Logic 14 (1):15-37.
    Though regarded today as one of the most important results in logic, the compactness theorem was largely ignored until nearly two decades after its discovery. This paper describes the vicissitudes of its evolution and transformation during the period 1930-1970, with special attention to the roles of Kurt Gödel, A. I. Maltsev, Leon Henkin, Abraham Robinson, and Alfred Tarski.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  10.  63
    Compact domination for groups definable in linear o-minimal structures.Pantelis E. Eleftheriou - 2009 - Archive for Mathematical Logic 48 (7):607-623.
    We prove the Compact Domination Conjecture for groups definable in linear o-minimal structures. Namely, we show that every definably compact group G definable in a saturated linear o-minimal expansion of an ordered group is compactly dominated by (G/G 00, m, π), where m is the Haar measure on G/G 00 and π : G → G/G 00 is the canonical group homomorphism.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  11.  50
    Compactness Theorem.A. C. Paseau & Robert Leek - 2022 - Internet Encyclopedia of Philosophy.
    The Compactness Theorem The compactness theorem is a fundamental theorem for the model theory of classical propositional and first-order logic. As well as having importance in several areas of mathematics, such as algebra and combinatorics, it also helps to pinpoint the strength of these logics, which are the standard ones used in mathematics and arguably … Continue reading Compactness Theorem →.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  13
    Compact Metrizable Structures and Classification Problems.Christian Rosendal & Joseph Zielinski - 2018 - Journal of Symbolic Logic 83 (1):165-186.
    We introduce and study the framework of compact metric structures and their associated notions of isomorphisms such as homeomorphic and bi-Lipschitz isomorphism. This is subsequently applied to model various classification problems in analysis such as isomorphism ofC*-algebras and affine homeomorphism of Choquet simplices, where among other things we provide a simple proof of the completeness of the isomorphism relation of separable, simple, nuclearC*-algebras recently established by M. Sabok.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. G-compactness and groups.Jakub Gismatullin & Ludomir Newelski - 2008 - Archive for Mathematical Logic 47 (5):479-501.
    Lascar described E KP as a composition of E L and the topological closure of E L (Casanovas et al. in J Math Log 1(2):305–319). We generalize this result to some other pairs of equivalence relations. Motivated by an attempt to construct a new example of a non-G-compact theory, we consider the following example. Assume G is a group definable in a structure M. We define a structure M′ consisting of M and X as two sorts, where X is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  14.  71
    Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  15.  35
    Compact spaces, elementary submodels, and the countable chain condition.Lúcia R. Junqueira, Paul Larson & Franklin D. Tall - 2006 - Annals of Pure and Applied Logic 144 (1-3):107-116.
    Given a space in an elementary submodel M of H, define XM to be X∩M with the topology generated by . It is established, using anti-large-cardinals assumptions, that if XM is compact and its regular open algebra is isomorphic to that of a continuous image of some power of the two-point discrete space, then X=XM. Assuming in addition, the result holds for any compact XM satisfying the countable chain condition.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16.  76
    A compact representation of proofs.Dale A. Miller - 1987 - Studia Logica 46 (4):347 - 370.
    A structure which generalizes formulas by including substitution terms is used to represent proofs in classical logic. These structures, called expansion trees, can be most easily understood as describing a tautologous substitution instance of a theorem. They also provide a computationally useful representation of classical proofs as first-class values. As values they are compact and can easily be manipulated and transformed. For example, we present an explicit transformations between expansion tree proofs and cut-free sequential proofs. A theorem prover which (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  17.  21
    (1 other version)Compactness, the löwenheim‐skolem property and the direct product of lattices of truth values.Mingsheng Ying - 1992 - Mathematical Logic Quarterly 38 (1):521-524.
    We show that compactness is preserved by arbitrary direct products of lattices of truth values and that the Löwenheim-Skolem property is preserved by finite direct products of lattices of truth values.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  38
    Compact representations of BL-algebras.Antonio Di Nola & Laurentiu Leustean - 2003 - Archive for Mathematical Logic 42 (8):737-761.
    In this paper we define sheaf spaces of BL-algebras (or BL-sheaf spaces), we study completely regular and compact BL-sheaf spaces and compact representations of BL-algebras and, finally, we prove that the category of non-trivial BL-algebras is equivalent with the category of compact local BL-sheaf spaces.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  19. Compact propositional Gödel logics.Matthias Baaz & Richard Zach - 1998 - In Baaz Matthias (ed.), 28th IEEE International Symposium on Multiple-Valued Logic, 1998. Proceedings. IEEE Press. pp. 108-113.
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  20.  42
    Definably compact Abelian groups.Mário J. Edmundo & Margarita Otero - 2004 - Journal of Mathematical Logic 4 (02):163-180.
    Let M be an o-minimal expansion of a real closed field. Let G be a definably compact definably connected abelian n-dimensional group definable in M. We show the following: the o-minimal fundamental group of G is isomorphic to ℤn; for each k>0, the k-torsion subgroup of G is isomorphic to n, and the o-minimal cohomology algebra over ℚ of G is isomorphic to the exterior algebra over ℚ with n generators of degree one.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  21.  41
    Compact Metric Spaces and Weak Forms of the Axiom of Choice.E. Tachtsis & K. Keremedis - 2001 - Mathematical Logic Quarterly 47 (1):117-128.
    It is shown that for compact metric spaces the following statements are pairwise equivalent: “X is Loeb”, “X is separable”, “X has a we ordered dense subset”, “X is second countable”, and “X has a dense set G = ∪{Gn : n ∈ ω}, ∣Gn∣ < ω, with limn→∞ diam = 0”. Further, it is shown that the statement: “Compact metric spaces are weakly Loeb” is not provable in ZF0 , the Zermelo-Fraenkel set theory without the axiom of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  24
    Compactness in MV-topologies: Tychonoff theorem and Stone–Čech compactification.Luz Victoria De La Pava & Ciro Russo - 2020 - Archive for Mathematical Logic 59 (1-2):57-79.
    In this paper, we discuss some questions about compactness in MV-topological spaces. More precisely, we first present a Tychonoff theorem for such a class of fuzzy topological spaces and some consequence of this result, among which, for example, the existence of products in the category of Stone MV-spaces and, consequently, of coproducts in the one of limit cut complete MV-algebras. Then we show that our Tychonoff theorem is equivalent, in ZF, to the Axiom of Choice, classical Tychonoff theorem, and Lowen’s (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Compact cylindric set algebras.György Serény - 1985 - Bulletin of the Section of Logic 14 (2):57-63.
    N´emeti remarked that the notion of compactness of cylindric of algebras corresponds to the notion of universality of models in logic [5]. The purpose of this paper is to formulate this correspondence in a purely algebraic setting.
     
    Export citation  
     
    Bookmark   1 citation  
  24. Compact Open Topology and Evaluation Map via Neutrosophic Sets.R. Dhavaseelan, S. Jafari & F. Smarandache - 2017 - Neutrosophic Sets and Systems 16:35-38.
    The concept of neutrosophic locally compact and neutrosophic compact open topology are introduced and some interesting propositions are discussed.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  35
    Computability of compact operators on computable Banach spaces with bases.Vasco Brattka & Ruth Dillhage - 2007 - Mathematical Logic Quarterly 53 (4‐5):345-364.
    We develop some parts of the theory of compact operators from the point of view of computable analysis. While computable compact operators on Hilbert spaces are easy to understand, it turns out that these operators on Banach spaces are harder to handle. Classically, the theory of compact operators on Banach spaces is developed with the help of the non-constructive tool of sequential compactness. We demonstrate that a substantial amount of this theory can be developed computably on Banach (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  61
    Symmetry, Compact Closure and Dagger Compactness for Categories of Convex Operational Models.Howard Barnum, Ross Duncan & Alexander Wilce - 2013 - Journal of Philosophical Logic 42 (3):501-523.
    In the categorical approach to the foundations of quantum theory, one begins with a symmetric monoidal category, the objects of which represent physical systems, and the morphisms of which represent physical processes. Usually, this category is taken to be at least compact closed, and more often, dagger compact, enforcing a certain self-duality, whereby preparation processes (roughly, states) are interconvertible with processes of registration (roughly, measurement outcomes). This is in contrast to the more concrete “operational” approach, in which the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  61
    Compactness notions for an apartness space.Douglas S. Bridges - 2012 - Archive for Mathematical Logic 51 (5-6):517-534.
    Two new notions of compactness, each classically equivalent to the standard classical one of sequential compactness, for apartness spaces are examined within Bishop-style constructive mathematics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  9
    Compact Inverse Categories.Robin Cockett & Chris Heunen - 2023 - In Alessandra Palmigiano & Mehrnoosh Sadrzadeh (eds.), Samson Abramsky on Logic and Structure in Computer Science and Beyond. Springer Verlag. pp. 813-832.
    We prove a structure theorem for compact inverse categories. The Ehresmann-Schein-Nambooripad theorem gives a structure theorem for inverse monoids: they are inductive groupoids. A particularly nice case due to Clifford is that commutative inverse monoids become semilattices of abelian groups. It has also been categorified by Hoehnke and DeWolf-Pronk to a structure theorem for inverse categories as locally complete inductive groupoids. We show that in the case of compact inverse categories, this takes the particularly nice form of a (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  1
    The United Nations Global Compact.James E. Post - 2013 - Business and Society 52 (1):53-63.
    The author focuses attention on some of the historical antecedents of the United Nations Global Compact. Developments such as the Global Compact do not arrive “whole cloth” but require people and institutions to be in a “state of readiness” for the idea. The article discusses Secretary-General Annan’s challenge to action, the historical background of three stages of corporate social responsibility, and the future of global corporate responsibility.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  64
    Compact quantum systems and the Pauli data problem.A. J. Bracken & R. J. B. Fawcett - 1993 - Foundations of Physics 23 (2):277-289.
    Compact quantum systems have underlying compact kinematical Lie algebras, in contrast to familiar noncompact quantum systems built on the Weyl-Heisenberg algebra. Pauli asked in the latter case: to what extent does knowledge of the probability distributions in coordinate and momentum space determine the state vector? The analogous question for compact quantum systems is raised, and some preliminary results are obtained.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  50
    Diamonds, compactness, and measure sequences.Omer Ben-Neria - 2019 - Journal of Mathematical Logic 19 (1):1950002.
    We establish the consistency of the failure of the diamond principle on a cardinal [Formula: see text] which satisfies a strong simultaneous reflection property. The result is based on an analysis of Radin forcing, and further leads to a characterization of weak compactness of [Formula: see text] in a Radin generic extension.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  20
    Square compactness and Lindelöf trees.Pedro E. Marun - 2024 - Archive for Mathematical Logic 63 (5):741-757.
    We prove that every weakly square compact cardinal is a strong limit cardinal, and therefore weakly compact. We also study Aronszajn trees with no uncountable finitely splitting subtrees, characterizing them in terms of being Lindelöf with respect to a particular topology. We prove that the class of such trees is consistently non-empty and lies between the classes of Suslin and Aronszajn trees.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  20
    On non‐compact logics in NEXT(KTB).Zofia Kostrzycka - 2008 - Mathematical Logic Quarterly 54 (6):617-624.
    In this paper we construct a continuum of logics, extensions of the modal logic T2 = KTB ⊕ □2p → □3p, which are non-compact and hence Kripke incomplete.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  35
    Constructive compact operators on a Hilbert space.Hajime Ishihara - 1991 - Annals of Pure and Applied Logic 52 (1-2):31-37.
    In this paper, we deal with compact operators on a Hilbert space, within the framework of Bishop's constructive mathematics. We characterize the compactness of a bounded linear mapping of a Hilbert space into C n , and prove the theorems: Let A and B be compact operators on a Hilbert space H , let C be an operator on H and let α ϵ C . Then α A is compact, A + B is compact, A (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Strong Compactness and a Global Version of a Theorem of Ben-David and Magidor.Arthur W. Apter - 2000 - Mathematical Logic Quarterly 46 (4):453-460.
    Starting with a model in which κ is the least inaccessible limit of cardinals δ which are δ+ strongly compact, we force and construct a model in which κ remains inaccessible and in which, for every cardinal γ < κ, □γ+ω fails but □γ+ω, ω holds. This generalizes a result of Ben-David and Magidor and provides an analogue in the context of strong compactness to a result of the author and Cummings in the context of supercompactness.
     
    Export citation  
     
    Bookmark   1 citation  
  36.  32
    Compactness and guessing principles in the Radin extensions.Omer Ben-Neria & Jing Zhang - 2023 - Journal of Mathematical Logic 23 (2).
    We investigate the interaction between compactness principles and guessing principles in the Radin forcing extensions. In particular, we show that in any Radin forcing extension with respect to a measure sequence on [Formula: see text], if [Formula: see text] is weakly compact, then [Formula: see text] holds. This provides contrast with a well-known theorem of Woodin, who showed that in a certain Radin extension over a suitably prepared ground model relative to the existence of large cardinals, the diamond principle (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37. Compact entailment and Wright's verification principle.Byeong-Uk Yi - 2001 - Mind 110 (438):413-421.
  38.  25
    Strong Compactness, Square, Gch, and Woodin Cardinals.Arthur W. Apter - 2024 - Journal of Symbolic Logic 89 (3):1180-1188.
    We show the consistency, relative to the appropriate supercompactness or strong compactness assumptions, of the existence of a non-supercompact strongly compact cardinal $\kappa _0$ (the least measurable cardinal) exhibiting properties which are impossible when $\kappa _0$ is supercompact. In particular, we construct models in which $\square _{\kappa ^+}$ holds for every inaccessible cardinal $\kappa $ except $\kappa _0$, GCH fails at every inaccessible cardinal except $\kappa _0$, and $\kappa _0$ is less than the least Woodin cardinal.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  45
    Level Compactness.Gillman Payette & Blaine D'Entremont - 2006 - Notre Dame Journal of Formal Logic 47 (4):545-555.
    The concept of compactness is a necessary condition of any system that is going to call itself a finitary method of proof. However, it can also apply to predicates of sets of formulas in general and in that manner it can be used in relation to level functions, a flavor of measure functions. In what follows we will tie these concepts of measure and compactness together and expand some concepts which appear in d'Entremont's master's thesis, "Inference and Level." We will (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40.  50
    Compactness in locales and in formal topology.Steven Vickers - 2006 - Annals of Pure and Applied Logic 137 (1-3):413-438.
    If a locale is presented by a “flat site”, it is shown how its frame can be presented by generators and relations as a dcpo. A necessary and sufficient condition is derived for compactness of the locale . Although its derivation uses impredicative constructions, it is also shown predicatively using the inductive generation of formal topologies. A predicative proof of the binary Tychonoff theorem is given, including a characterization of the finite covers of the product by basic opens. The discussion (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  41.  51
    Compactness versus interior-to-edge ratio; two approaches for habitat's ranking.Attila R. Imre - 2006 - Acta Biotheoretica 54 (1):21-26.
    In landscape ecology spatial descriptors (or indices) can be used to characterize habitats. Some of these descriptors can be used for habitat's ranking; this ranking is very important for conservation purposes. We would like to show that two traditional descriptors, namely the compactness and interior-to-edge ratio can give contradictory results. Being the second one is a more relevant descriptor, we would like to propose to avoid the further use the compactness in habitat's ranking.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  14
    Compactness in first order Łukasiewicz logic.N. Tavana, M. Pourmahdian & F. Didehvar - 2012 - Logic Journal of the IGPL 20 (1):254-265.
    For a subset K ⊆ [0, 1], the notion of K-satisfiability is a generalization of the usual satisfiability in first order fuzzy logics. A set Γ of closed formulas in a first order language τ is K-satisfiable, if there exists a τ-structure such that ∥ σ ∥ ∈ K, for any σ ∈ Γ. As a consequence, the usual compactness property can be replaced by the K-compactness property. In this paper, the K-compactness property for Łukasiewicz first order logic is investigated. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  21
    On non-compact p-adic definable groups.Will Johnson & Ningyuan Yao - 2022 - Journal of Symbolic Logic 87 (1):188-213.
    In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable subgroup H of dimension 1 which is not (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  44.  12
    Adding a Nonreflecting Weakly Compact Set.Brent Cody - 2019 - Notre Dame Journal of Formal Logic 60 (3):503-521.
    For n<ω, we say that theΠn1-reflection principle holds at κ and write Refln if and only if κ is a Πn1-indescribable cardinal and every Πn1-indescribable subset of κ has a Πn1-indescribable proper initial segment. The Πn1-reflection principle Refln generalizes a certain stationary reflection principle and implies that κ is Πn1-indescribable of order ω. We define a forcing which shows that the converse of this implication can be false in the case n=1; that is, we show that κ being Π11-indescribable of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Compactness and independence in non first order frameworks.Itay Ben-Yaacov - 2005 - Bulletin of Symbolic Logic 11 (1):28-50.
    This communication deals with positive model theory, a non first order model theoretic setting which preserves compactness at the cost of giving up negation. Positive model theory deals transparently with hyperimaginaries, and accommodates various analytic structures which defy direct first order treatment. We describe the development of simplicity theory in this setting, and an application to the lovely pairs of models of simple theories without the weak non finite cover property.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  57
    The Global Compact Selected Experiences and Reflections.Georg Kell - 2005 - Journal of Business Ethics 59 (1-2):69-79.
    In this paper, the Executive Head of the Global Compact shares some of his own reflections on the evolution of the Global Compact initiative – United Nations Secretary-General Kofi Annan’s voluntary corporate citizenship initiative in the area of human rights, labor, the environment and anti-corruption. Two main themes are addressed. The first considers the Global Compact’s institutional context, examining how such an initiative is even possible in the historically hierarchical and traditionally business-unfriendly UN. The second concerns the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   40 citations  
  47.  23
    Generalising compactness.Hannes Diener - 2008 - Mathematical Logic Quarterly 54 (1):49-57.
    Working within the framework of Bishop's constructive mathematics, we will show that it is possible to define compactness in a more general setting than that of uniform spaces. It is also shown that it is not possible to do this in a topological space.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  48.  24
    Weakly compact cardinals: A combinatorial proof.S. Shelah - 1979 - Journal of Symbolic Logic 44 (4):559-562.
  49. United Nations Global Compact: The Promise–Performance Gap.S. Prakash Sethi & Donald H. Schepers - 2014 - Journal of Business Ethics 122 (2):193-208.
    The United Nations Global Compact (UNGC) was created in 2000 to leverage UN prestige and induce corporations to embrace 10 principles incorporating values of environmental sustainability, protection of human rights, fair treatment of workers, and elimination of bribery and corruption. We review and analyze the GC’s activities and impact in enhancing corporate social responsibility since inception. First, we propose an analytical framework which allows us to assess the qualities of the UNGC and its principles in the context of external (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  50.  32
    Compactness.A. C. Paseau, and & Robert Leek - 2023 - Internet Encyclopedia of Philosophy.
    The Compactness Theorem The compactness theorem is a fundamental theorem for the model theory of classical propositional and first-order logic. As well as having importance in several areas of mathematics, such as algebra and combinatorics, it also helps to pinpoint the strength of these logics, which are the standard ones used in mathematics and arguably … Continue reading Compactness →.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 969