Results for 'Cse4'

Order:
  1.  14
    Is there a unique form of chromatin at the Saccharomyces cerevisiae centromeres?Munira A. Basrai & Philip Hieter - 1995 - Bioessays 17 (8):669-672.
    Chromosome transmission in S. cerevisiae requires the activities of many structural and regulatory proteins required for the replication, repair, recombination and segregation of chromosomal DNA, and co‐ordination of the chromosome cycle with progression through the cell cycle. An important structural domain on each chromosome is the kinetochore (centromere DNA and associated proteins), which provides the site of attachment of chromosomes to the spindle microtubules. Stoler et al.(1) have recently reported the cloning of an essential gene CSE4, mutations in which (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  32
    Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants.Célia Jeronimo & François Robert - 2016 - Bioessays 38 (5):420-426.
    Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post‐translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP‐dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP‐A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark