14 found
Order:
Disambiguations
Daniel W. Cunningham [12]Daniel Cunningham [4]
  1.  25
    The real core model and its scales.Daniel W. Cunningham - 1995 - Annals of Pure and Applied Logic 72 (3):213-289.
    This paper introduces the real core model K() and determines the extent of scales in this inner model. K() is an analog of Dodd-Jensen's core model K and contains L(), the smallest inner model of ZF containing the reals R. We define iterable real premice and show that Σ1∩() has the scale property when vR AD. We then prove the following Main Theorem: ZF + AD + V = K() DC. Thus, we obtain the Corollary: If ZF + AD +()L() (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  2.  36
    A logical introduction to proof.Daniel W. Cunningham - 2012 - New York: Springer.
    Propositional logic -- Predicate logic -- Proof strategies and diagrams -- Mathematical induction -- Set theory -- Functions -- Relations -- Core concepts in abstract algebra -- Core concepts in real analysis.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  43
    Is there a set of reals not in K(R)?Daniel W. Cunningham - 1998 - Annals of Pure and Applied Logic 92 (2):161-210.
    We show, using the fine structure of K, that the theory ZF + AD + X R[X K] implies the existence of an inner model of ZF + AD + DC containing a measurable cardinal above its Θ, the supremum of the ordinals which are the surjective image of R. As a corollary, we show that HODK = K for some P K where K is the Dodd-Jensen Core Model relative to P. In conclusion, we show that the theory ZF (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  4.  39
    The fine structure of real mice.Daniel Cunningham - 1998 - Journal of Symbolic Logic 63 (3):937-994.
    Before one can construct scales of minimal complexity in the Real Core Model, K(R), one needs to develop the fine-structure theory of K(R). In this paper, the fine structure theory of mice, first introduced by Dodd and Jensen, is generalized to that of real mice. A relative criterion for mouse iterability is presented together with two theorems concerning the definability of this criterion. The proof of the first theorem requires only fine structure; whereas, the second theorem applies to real mice (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  26
    A covering lemma for L(ℝ).Daniel W. Cunningham - 2002 - Archive for Mathematical Logic 41 (1):49-54.
    Jensen's celebrated Covering Lemma states that if 0# does not exist, then for any uncountable set of ordinals X, there is a Y∈L such that X⊆Y and |X| = |Y|. Working in ZF + AD alone, we establish the following analog: If ℝ# does not exist, then L(ℝ) and V have exactly the same sets of reals and for any set of ordinals X with |X| ≥ΘL(ℝ), there is a Y∈L(ℝ) such that X⊆Y and |X| = |Y|. Here ℝ is (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  25
    (1 other version)A Diamond Principle Consistent with AD.Daniel Cunningham - 2017 - Notre Dame Journal of Formal Logic 58 (3):397-407.
    We present a diamond principle ◊R concerning all subsets of Θ, the supremum of the ordinals that are the surjective image of R. We prove that ◊R holds in Steel’s core model K, a canonical inner model for determinacy.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  35
    Ideology, history, and political affect.Daniel Cunningham - 2024 - Constellations 31 (2):146-159.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  14
    Utopia as compensation for secularization.Daniel Cunningham - 2024 - Thesis Eleven 181 (1):20-33.
    In this article, I argue for an historical understanding of the relationship between ideology and utopia/utopianism that positions the latter as a specifically modern compensation for the loss of the cosmologically grounded, unitary ideology supplied by the late medieval Christian Church. This claim relies upon but revises Fredric Jameson’s early theorization of the collaboration between ideology and utopia/utopianism, which emphasizes that utopian elements allow ideology to offer subjects a ‘compensatory exchange’ for their complicity. Developing my central argument requires considering the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  54
    A Covering Lemma for HOD of K (ℝ).Daniel W. Cunningham - 2010 - Notre Dame Journal of Formal Logic 51 (4):427-442.
    Working in ZF+AD alone, we prove that every set of ordinals with cardinality at least Θ can be covered by a set of ordinals in HOD of K (ℝ) of the same cardinality, when there is no inner model with an ℝ-complete measurable cardinal. Here ℝ is the set of reals and Θ is the supremum of the ordinals which are the surjective image of ℝ.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  10.  18
    Mathematical Logic: An Introduction.Daniel W. Cunningham - 2023 - Boston: De Gruyter.
    Mathematical Logic: An Introduction is a textbook that uses mathematical tools to investigate mathematics itself. In particular, the concepts of proof and truth are examined. The book presents the fundamental topics in mathematical logic and presents clear and complete proofs throughout the text. Such proofs are used to develop the language of propositional logic and the language of first-order logic, including the notion of a formal deduction. The text also covers Tarski’s definition of truth and the computability concept. It also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  18
    On forcing over $$L(\mathbb {R})$$.Daniel W. Cunningham - 2023 - Archive for Mathematical Logic 62 (3):359-367.
    Given that \(L(\mathbb {R})\models {\text {ZF}}+ {\text {AD}}+{\text {DC}}\), we present conditions under which one can generically add new elements to \(L(\mathbb {R})\) and obtain a model of \({\text {ZF}}+ {\text {AD}}+{\text {DC}}\). This work is motivated by the desire to identify the smallest cardinal \(\kappa \) in \(L(\mathbb {R})\) for which one can generically add a new subset \(g\subseteq \kappa \) to \(L(\mathbb {R})\) such that \(L(\mathbb {R})(g)\models {\text {ZF}}+ {\text {AD}}+{\text {DC}}\).
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12.  18
    Strong partition cardinals and determinacy in $${K}$$ K.Daniel W. Cunningham - 2015 - Archive for Mathematical Logic 54 (1-2):173-192.
    We prove within K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}$$\end{document} that the axiom of determinacy is equivalent to the assertion that for each ordinal λ λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa > \lambda}$$\end{document}. Here Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Theta}$$\end{document} is the supremum of the ordinals which are the surjective image of the set of reals R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  26
    A covering lemma for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb {R})}$$\end{document}. [REVIEW]Daniel W. Cunningham - 2007 - Archive for Mathematical Logic 46 (3-4):197-221.
    The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y\in K}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X\subseteq Y}$$\end{document} and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  14.  25
    Scales of minimal complexity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb{R})}$$\end{document}. [REVIEW]Daniel W. Cunningham - 2012 - Archive for Mathematical Logic 51 (3-4):319-351.
    Using a Levy hierarchy and a fine structure theory for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb{R})}$$\end{document}, we obtain scales of minimal complexity in this inner model. Each such scale is obtained assuming the determinacy of only those sets of reals whose complexity is strictly below that of the scale constructed.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation