11 found
Order:
  1.  21
    Classical and effective descriptive complexities of ω-powers.Olivier Finkel & Dominique Lecomte - 2009 - Annals of Pure and Applied Logic 160 (2):163-191.
    We prove that, for each countable ordinal ξ≥1, there exist some -complete ω-powers, and some -complete ω-powers, extending previous works on the topological complexity of ω-powers [O. Finkel, Topological properties of omega context free languages, Theoretical Computer Science 262 669–697; O. Finkel, Borel hierarchy and omega context free languages, Theoretical Computer Science 290 1385–1405; O. Finkel, An omega-power of a finitary language which is a borel set of infinite rank, Fundamenta informaticae 62 333–342; D. Lecomte, Sur les ensembles de phrases (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  55
    How can we recognize potentially ${\bf\pi}^{0}_{\XI}$ subsets of the plane?Dominique Lecomte - 2009 - Journal of Mathematical Logic 9 (1):39-62.
    Let ξ ≥ 1 be a countable ordinal. We study the Borel subsets of the plane that can be made [Formula: see text] by refining the Polish topology on the real line. These sets are called potentially [Formula: see text]. We give a Hurewicz-like test to recognize potentially [Formula: see text] sets.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  44
    Ω-powers and descriptive set theory.Dominique Lecomte - 2005 - Journal of Symbolic Logic 70 (4):1210-1232.
    We study the sets of the infinite sentences constructible with a dictionary over a finite alphabet, from the viewpoint of descriptive set theory. Among others, this gives some true co-analytic sets. The case where the dictionary is finite is studied and gives a natural example of a set at level ω of the Wadge hierarchy.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  34
    Basis theorems for non-potentially closed sets and graphs of uncountable borel chromatic number.Dominique Lecomte & Benjamin D. Miller - 2008 - Journal of Mathematical Logic 8 (2):121-162.
    We show that there is an antichain basis for neither the class of non-potentially closed Borel subsets of the plane under Borel rectangular reducibility nor the class of analytic graphs of uncountable Borel chromatic number under Borel reducibility.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  19
    (1 other version)Some complete $$\omega $$-powers of a one-counter language, for any Borel class of finite rank.Olivier Finkel & Dominique Lecomte - 2020 - Archive for Mathematical Logic 60 (1-2):161-187.
    We prove that, for any natural number \, we can find a finite alphabet \ and a finitary language L over \ accepted by a one-counter automaton, such that the \-power $$\begin{aligned} L^\infty :=\{ w_0w_1\ldots \in \Sigma ^\omega \mid \forall i\in \omega ~~w_i\in L\} \end{aligned}$$is \-complete. We prove a similar result for the class \.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  17
    Acyclicity and reduction.Dominique Lecomte - 2019 - Annals of Pure and Applied Logic 170 (3):383-426.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  18
    A separation result for countable unions of borel rectangles.Dominique Lecomte - 2019 - Journal of Symbolic Logic 84 (2):517-532.
  8.  9
    Injective tests of low complexity in the plane.Dominique Lecomte & Rafael Zamora - 2019 - Mathematical Logic Quarterly 65 (2):134-169.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  14
    L'exhumation.Dominique Lecomte - 1996 - Médecine et Droit 1996 (19):13-14.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  15
    L'identification des victimes de catastrophes.Dominique Lecomte - 1995 - Médecine et Droit 1995 (13):7-9.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  12
    Universal and complete sets in martingale theory.Dominique Lecomte & Miroslav Zelený - 2018 - Mathematical Logic Quarterly 64 (4-5):312-335.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark