Order:
Disambiguations
Joshua A. Cole [3]Joshua Cole [2]
  1.  65
    Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  2.  30
    The ∀∃-theory of the effectively closed Medvedev degrees is decidable.Joshua A. Cole & Takayuki Kihara - 2010 - Archive for Mathematical Logic 49 (1):1-16.
    We show that there is a computable procedure which, given an ∀∃-sentence ${\varphi}$ in the language of the partially ordered sets with a top element 1 and a bottom element 0, computes whether ${\varphi}$ is true in the Medvedev degrees of ${\Pi^0_1}$ classes in Cantor space, sometimes denoted by ${\mathcal{P}_s}$.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  3. The chaos of particular facts: statistics, medicine and the social body in early 19th-century France.Joshua Cole - 1994 - History of the Human Sciences 7 (3):1-27.
  4.  63
    Embedding FD(ω) into {mathcal{P}_s} densely.Joshua A. Cole - 2008 - Archive for Mathematical Logic 46 (7-8):649-664.
    Let ${\mathcal{P}_s}$ be the lattice of degrees of non-empty ${\Pi_1^0}$ subsets of 2 ω under Medvedev reducibility. Binns and Simpson proved that FD(ω), the free distributive lattice on countably many generators, is lattice-embeddable below any non-zero element in ${\mathcal{P}_s}$ . Cenzer and Hinman proved that ${\mathcal{P}_s}$ is dense, by adapting the Sacks Preservation and Sacks Coding Strategies used in the proof of the density of the c.e. Turing degrees. With a construction that is a modification of the one by Cenzer (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  76
    Inconsistent Mathematics.Category Theory.Closed Set Sheaves and Their Categories.Foundations: Provability, Truth and Sets. [REVIEW]Newton C. A. da Costa, Otavio Bueno, Chris Mortensen, Peter Lavers, William James & Joshua Cole - 1997 - Journal of Symbolic Logic 62 (2):683.
    Reviewed Works:Chris Mortensen, Inconsistent Mathematics.Chris Mortensen, Peter Lavers, Category Theory.William James, Closed Set Sheaves and Their Categories.Chris Mortensen, Joshua Cole, Foundations: Provability, Truth and Sets.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark