31 found
Order:
  1. Informal Rigour and Completeness Proofs.Georg Kreisel - 1967 - In Imre Lakatos (ed.), Problems in the philosophy of mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 138--157.
    Direct download  
     
    Export citation  
     
    Bookmark   171 citations  
  2.  68
    (2 other versions)Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems.Georg Kreisel & Azriel Lévy - 1968 - Zeitschrift für Mathematische Logic Und Grundlagen der Mathematik 14 (1):97--142.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  3. Interpretation of analysis by means of constructive functionals of finite types.Georg Kreisel - 1959 - In A. Heyting (ed.), Constructivity in mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 101--128.
     
    Export citation  
     
    Bookmark   55 citations  
  4.  56
    (1 other version)Hilbert's programme.Georg Kreisel - 1958 - Dialectica 12 (3‐4):346-372.
    Hilbert's plan for understanding the concept of infinity required the elimination of non‐finitist machinery from proofs of finitist assertions. The failure of the original plan leads to a hierarchy of progressively less elementary, but still constructive methods instead of finitist ones . A mathematical proof of this failure requires a definition of « finitist ».—The paper sketches the three principal methods for the syntactic analysis of non‐constructive mathematics, the resulting consistency proofs and constructive interpretations, modelled on Herbrand's theorem, and their (...)
    Direct download  
     
    Export citation  
     
    Bookmark   26 citations  
  5. Mathematical Logic.Georg Kreisel - 1965 - In Lectures on Modern Mathematics. New York: Wiley. pp. 95-195.
    No categories
     
    Export citation  
     
    Bookmark   26 citations  
  6.  28
    Elements of mathematical logic.Georg Kreisel - 1967 - Amsterdam,: North Holland Pub. Co.. Edited by J. L. Krivine.
  7. Church's thesis and the ideal of informal rigour.Georg Kreisel - 1987 - Notre Dame Journal of Formal Logic 28 (4):499-519.
  8. Mathematical logic: Tool and object lesson for science.Georg Kreisel - 1985 - Synthese 62 (2):139-151.
    The object lesson concerns the passage from the foundational aims for which various branches of modern logic were originally developed to the discovery of areas and problems for which logical methods are effective tools. The main point stressed here is that this passage did not consist of successive refinements, a gradual evolution by adaptation as it were, but required radical changes of direction, to be compared to evolution by migration. These conflicts are illustrated by reference to set theory, model theory, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  9.  15
    Ensembles Récursivement Mesurable et Ensembles Récursivement Ouverts ou Fermés.Georg Kreisel & Daniel Lacombe - 1966 - Journal of Symbolic Logic 31 (1):133-133.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. Foundations of intuitionistic logic.Georg Kreisel - 1962 - Logic, Methodology, and the Philosophy of Science:198–210.
  11.  45
    (1 other version)Finite Definability of Number-Theoretic Functions and Parametric Completeness of Equational Calculi.Georg Kreisel & William W. Tait - 1961 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 7 (1-5):28-38.
  12.  37
    Formally Self-Referential Propositions for Cut Free Analysis and Related Systems.Georg Kreisel & Gaisi Takeuti - 1985 - Journal of Symbolic Logic 50 (1):244-246.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  13.  1
    Elements de logique mathematique - theorie des modeles: par G. Kreisel et J.L. Krivine.Georg Kreisel & J. L. Krivine - 1967 - Dunod.
  14.  78
    Collected Works of Kurt Godel 1938-1974.Georg Kreisel - 1991 - Journal of Symbolic Logic 56 (3):1085.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  15.  72
    Hilary Putnam. Mathematics without foundations. The journal of philosophy, vol. 64 , pp. 5–22.Georg Kreisel - 1972 - Journal of Symbolic Logic 37 (2):402-404.
  16. Church’s thesis: a kind of reducibility axiom for constructive mathematics.Georg Kreisel - 1970 - In Studies in Logic and the Foundations of Mathematics. Elsevier. pp. 121–150.
     
    Export citation  
     
    Bookmark  
  17. Éléments de logique mathématique.Georg Kreisel - 1967 - Paris,: Dunod. Edited by J. L. Krivine.
     
    Export citation  
     
    Bookmark  
  18.  12
    Formal rules and questions of J u S t I F y I N g mathematical practice.Georg Kreisel - 1978 - In Kuno Lorenz (ed.), Konstruktionen Versus Positionen: Beiträge Zur Diskussion Um Die Konstruktive Wissenschaftstheorie. Bd 1: Spezielle Wissenschaftstheorie. Bd 2: Allgemeine Wissenschaftstheorie. Paul Lorenzen Zum 60. Geburtstag. New York: De Gruyter. pp. 99-130.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  17
    Gödel's Intepretation of Heyting's Arithmetic.Georg Kreisel, G. Kreisel & A. Heyting - 1971 - Journal of Symbolic Logic 36 (1):169-171.
  20.  57
    Hao Wang. Logic, computation and philosophy. L''ge de la science, vol. 3 , pp. 101–115.Georg Kreisel - 1974 - Journal of Symbolic Logic 39 (2):358-359.
  21.  22
    Logical Hygiene, Foundations, and Abstractions: Diversity among Aspects and Options.Georg Kreisel - 2011 - In Matthias Baaz (ed.), Kurt Gödel and the foundations of mathematics: horizons of truth. New York: Cambridge University Press. pp. 27.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  22.  3
    Lectures on Modern Mathematics.Georg Kreisel (ed.) - 1965 - New York: Wiley.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  10
    Modelltheorie.Georg Kreisel - 1972 - Berlin,: Springer. Edited by J. L. Krivine.
    Wir betrachten hier jenen Teil der Grundlagenforschung, der die "intui­ tive" oder "inhaltliche" Mathematik, d. h. das, was ein gew6hnlicher Mathematiker unter Mathematik versteht, systematisch beschreibt und analysiert. Im deskriptiven Teil wird die informale Mathematik in einer formal en Sprache (z. B. der der Mengenlehre) neu formuliert. Eine solche Sprache hat, verglichen mit der Sprache der informalen Mathematik, ein sehr eingeschr~nktes Vokabular und eine vollkommen exakte Grammatik; dadurch wird naturlich die Pr~zision erh6ht und der Blick von Unwesentlichem befreit. Im Gegensatz (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  18
    Some Concepts Concerning Formal Systems of Number Theory.Georg Kreisel - 1966 - Journal of Symbolic Logic 31 (1):128-128.
    Direct download  
     
    Export citation  
     
    Bookmark  
  25.  22
    (1 other version)The Motto of 'Philosophical Investigations' and the Philosophy of Proofs and Rules.Georg Kreisel - 1978 - Grazer Philosophische Studien 6 (1):13-38.
    Ausgangspunkt dieses Artikels ist die Einsicht, die auch von Wittgenstein und der "schweigenden Mehrheit" geteilt wird, daß die meisten sogenannten fundamentalen Begriffe und Probleme der Philosophie erkenntnistheoretisch unrentabel sind, insbesondere der Begriff der Gültigkeit (von Beweis- und Rechenregeln) und seine traditionelle Problematik. Im Gegensatz zu Wittgenstein wird diese Einsicht aber nicht auf "Sinnlosigkeit", d.h. Präzisionsunfähigkeitjener Problematik, sondern auf ihre Oberflächl d.h. unangemessene Allgemeinheit, zurückgeführt.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  26.  43
    A Survey of Mathematical Logic. [REVIEW]Georg Kreisel - 1966 - Philosophical Review 75 (2):240-244.
  27.  33
    Reviews. Kurt Schütte. Beweistheorie. Springer-Verlag, Berlin-Göttingen-Heidelberg 1960, X + 355 pp. [REVIEW]Georg Kreisel - 1960 - Journal of Symbolic Logic 25 (3):243-249.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  28.  83
    Book review: Collected works, Vol. I [Oxford Univ. Press, New York, 1986] by K. Gödel. [REVIEW]Georg Kreisel - 1987 - Notre Dame Journal of Formal Logic 29 (1):160-181.
  29.  30
    N. A. Šanin. On the constructive interpretation of mathematical judgments. English translation of XXXI 255 by Elliott Mendelson. American Mathematical Society translations, ser. 2 vol. 23 , pp. 109–189. - A. A. Markov. On constructive functions. English translation of XXXI 258 by Moshe Machover. American Mathematical Society translations, vol. 29 , pp. 163–195. - S. C. Kleene. A formal system of intuitionistic analysis. The foundations of intuitionistlc mathematics especially in relation to recursive functions, by Stephen Cole Kleene and Richard Eugene Vesley, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam1965, pp. 1–89. - S. C. Kleene. Various notions of realizability:The foundations of intuitionistlc mathematics especially in relation to recursive functions, by Stephen Cole Kleene and Richard Eugene Vesley, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam1965, pp. 90–132. - Richard E. Ve. [REVIEW]Georg Kreisel - 1966 - Journal of Symbolic Logic 31 (2):258-261.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  34
    Solomon Feferman. Ordinals and functionals in proof theory. Actes du Congrès International des Mathématiciens 1970, Gauthier-Villars, Paris 1971, Vol. 1, pp. 229–233. [REVIEW]Georg Kreisel - 1975 - Journal of Symbolic Logic 40 (4):625-626.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  43
    S. Ú. Maslov, G. É. Minc, and V. P. Orévkov. Nérazréšimost′ ν konstruktivnom isčislénii prédikatov nékotoryh klassov formul, sodéržaščih tol′ko odnoméstnyé prédikatnyé péréménnyé. Doklady Akadémii Nauk, vol. 163 , pp. 295–297. - S. Ju. Maslov, G. E. Minc, and V. P. Orevkov. Unsolvability in the constructive predicate calculus of certain classes of formulas containing only monadic predicate variables. Translation of the preceding by E. Mendelson. Soviet mathematics, vol. 6 , pp. 918–920. [REVIEW]Georg Kreisel - 1970 - Journal of Symbolic Logic 35 (1):143-144.