Results for 'Large cardinals'

970 found
Order:
See also
  1. In this paper, we sketch the development of two important themes of modern set theory, both of which can be regarded as growing out of work of Kurt G ödel. We begin with a review of some basic concepts and conventions of set theory.Large Cardinals - 1995 - Bulletin of Symbolic Logic 1 (4).
     
    Export citation  
     
    Bookmark  
  2.  93
    Large Cardinals, Inner Models, and Determinacy: An Introductory Overview.P. D. Welch - 2015 - Notre Dame Journal of Formal Logic 56 (1):213-242.
    The interaction between large cardinals, determinacy of two-person perfect information games, and inner model theory has been a singularly powerful driving force in modern set theory during the last three decades. For the outsider the intellectual excitement is often tempered by the somewhat daunting technicalities, and the seeming length of study needed to understand the flow of ideas. The purpose of this article is to try and give a short, albeit rather rough, guide to the broad lines of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  28
    The large cardinals between supercompact and almost-huge.Norman Lewis Perlmutter - 2015 - Archive for Mathematical Logic 54 (3-4):257-289.
    I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j:V→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j: V \to M}$$\end{document} such that M is closed under sequences of length sup{j|f:κ→κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sup\{{j\,|\,f: \kappa \to \kappa}\}}$$\end{document}. Some (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  4.  96
    Large cardinals and definable well-orders on the universe.Andrew D. Brooke-Taylor - 2009 - Journal of Symbolic Logic 74 (2):641-654.
    We use a reverse Easton forcing iteration to obtain a universe with a definable well-order, while preserving the GCH and proper classes of a variety of very large cardinals. This is achieved by coding using the principle ◊ $_{k^ - }^* $ at a proper class of cardinals k. By choosing the cardinals at which coding occurs sufficiently sparsely, we are able to lift the embeddings witnessing the large cardinal properties without having to meet any (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  5.  20
    Large Cardinals and Ramifiability for Directed Sets.R. Hinnion & O. Esser - 2000 - Mathematical Logic Quarterly 46 (1):25-34.
    The notion of “ramifiability” , usually applied to cardinals, can be extended to directed sets and is put in relation here with familiar “large cardinal” properties.
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  32
    (1 other version)The large cardinal strength of weak Vopenka’s principle.Trevor M. Wilson - 2022 - Journal of Mathematical Logic 22 (1):2150024.
    We show that Weak Vopěnka’s Principle, which is the statement that the opposite category of ordinals cannot be fully embedded into the category of graphs, is equivalent to the large cardinal principle Ord is Woodin, which says that for every class [Formula: see text] there is a [Formula: see text]-strong cardinal. Weak Vopěnka’s Principle was already known to imply the existence of a proper class of measurable cardinals. We improve this lower bound to the optimal one by defining (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  20
    Small models, large cardinals, and induced ideals.Peter Holy & Philipp Lücke - 2021 - Annals of Pure and Applied Logic 172 (2):102889.
    We show that many large cardinal notions up to measurability can be characterized through the existence of certain filters for small models of set theory. This correspondence will allow us to obtain a canonical way in which to assign ideals to many large cardinal notions. This assignment coincides with classical large cardinal ideals whenever such ideals had been defined before. Moreover, in many important cases, relations between these ideals reflect the ordering of the corresponding large cardinal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  33
    Generic large cardinals as axioms.Monroe Eskew - 2020 - Review of Symbolic Logic 13 (2):375-387.
    We argue against Foreman’s proposal to settle the continuum hypothesis and other classical independent questions via the adoption of generic large cardinal axioms.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  27
    Large Cardinals as Principles of Structural Reflection.Joan Bagaria - 2023 - Bulletin of Symbolic Logic 29 (1):19-70.
    After discussing the limitations inherent to all set-theoretic reflection principles akin to those studied by A. Lévy et. al. in the 1960s, we introduce new principles of reflection based on the general notion of Structural Reflection and argue that they are in strong agreement with the conception of reflection implicit in Cantor’s original idea of the unknowability of the Absolute, which was subsequently developed in the works of Ackermann, Lévy, Gödel, Reinhardt, and others. We then present a comprehensive survey of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  52
    (1 other version)Are Large Cardinal Axioms Restrictive?Neil Barton - 2023 - Philosophia Mathematica 31 (3):372-407.
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  47
    Large cardinals and gap-1 morasses.Andrew D. Brooke-Taylor & Sy-David Friedman - 2009 - Annals of Pure and Applied Logic 159 (1-2):71-99.
    We present a new partial order for directly forcing morasses to exist that enjoys a significant homogeneity property. We then use this forcing in a reverse Easton iteration to obtain an extension universe with morasses at every regular uncountable cardinal, while preserving all n-superstrong , hyperstrong and 1-extendible cardinals. In the latter case, a preliminary forcing to make the GCH hold is required. Our forcing yields morasses that satisfy an extra property related to the homogeneity of the partial order; (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Extremely large cardinals in the rationals.Harvey Friedman - manuscript
    In 1995 we gave a new simple principle of combinatorial set theory and showed that it implies the existence of a nontrivial elementary embedding from a rank into itself, and follows from the existence of a nontrivial elementary embedding from V into M, where M contains the rank at the first fixed point above the critical point. We then gave a “diamondization” of this principle, and proved its relative consistency by means of a standard forcing argument.
     
    Export citation  
     
    Bookmark  
  13.  61
    Large cardinals and locally defined well-orders of the universe.David Asperó & Sy-David Friedman - 2009 - Annals of Pure and Applied Logic 157 (1):1-15.
    By forcing over a model of with a class-sized partial order preserving this theory we produce a model in which there is a locally defined well-order of the universe; that is, one whose restriction to all levels H is a well-order of H definable over the structure H, by a parameter-free formula. Further, this forcing construction preserves all supercompact cardinals as well as all instances of regular local supercompactness. It is also possible to define variants of this construction which, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  14.  40
    Certain very large cardinals are not created in small forcing extensions.Richard Laver - 2007 - Annals of Pure and Applied Logic 149 (1-3):1-6.
    The large cardinal axioms of the title assert, respectively, the existence of a nontrivial elementary embedding j:Vλ→Vλ, the existence of such a j which is moreover , and the existence of such a j which extends to an elementary j:Vλ+1→Vλ+1. It is known that these axioms are preserved in passing from a ground model to a small forcing extension. In this paper the reverse directions of these preservations are proved. Also the following is shown : if V is a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  15.  14
    Large Cardinals and the Continuum Hypothesis.Radek Honzik - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Basel, Switzerland: Birkhäuser. pp. 205-226.
    This is a survey paper which discusses the impact of large cardinals on provability of the Continuum Hypothesis. It was Gödel who first suggested that perhaps “strong axioms of infinity” could decide interesting set-theoretical statements independent over ZFC, such as CH. This hope proved largely unfounded for CH—one can show that virtually all large cardinals defined so far do not affect the status of CH. It seems to be an inherent feature of large cardinals (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  23
    The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings.Akihiro Kanamori - 1994 - Springer.
    This is the softcover reprint of the very popular hardcover edition. The theory of large cardinals is currently a broad mainstream of modern set theory, the main area of investigation for the analysis of the relative consistency of mathematical propositions and possible new axioms for mathematics. The first of a projected multi-volume series, this book provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   37 citations  
  17.  65
    The PCF Conjecture and Large Cardinals.Luís Pereira - 2008 - Journal of Symbolic Logic 73 (2):674 - 688.
    We prove that a combinatorial consequence of the negation of the PCF conjecture for intervals, involving free subsets relative to set mappings, is not implied by even the strongest known large cardinal axiom.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  43
    Tameness from large cardinal axioms.Will Boney - 2014 - Journal of Symbolic Logic 79 (4):1092-1119.
    We show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  19. Large cardinals beyond choice.Joan Bagaria, Peter Koellner & W. Hugh Woodin - 2019 - Bulletin of Symbolic Logic 25 (3):283-318.
    The HOD Dichotomy Theorem states that if there is an extendible cardinal, δ, then either HOD is “close” to V or HOD is “far” from V. The question is whether the future will lead to the first or the second side of the dichotomy. Is HOD “close” to V, or “far” from V? There is a program aimed at establishing the first alternative—the “close” side of the HOD Dichotomy. This is the program of inner model theory. In recent years the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  20.  31
    Large Cardinals and the Iterative Conception of Set.Neil Barton - unknown
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. One idea sometimes alluded to is that maximality considerations speak in favour of large cardinal axioms consistent with ZFC, since it appears to be `possible' to continue the hierarchy far enough to generate the relevant transfinite number. In this paper, we argue against this idea based on a priority of subset formation under the iterative conception. In particular, we argue (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  23
    Large cardinals and projective sets.Haim Judah & Otmar Spinas - 1997 - Archive for Mathematical Logic 36 (2):137-155.
    We investigate measure and category in the projective hierarchie in the presence of large cardinals. Assuming a measurable larger than $n$ Woodin cardinals we construct a model where every $\Delta ^1_{n+4}$ -set is measurable, but some $\Delta ^1_{n+4}$ -set does not have Baire property. Moreover, from the same assumption plus a precipitous ideal on $\omega _1$ we show how a model can be forced where every $\Sigma ^1_{n+4}-$ set is measurable and has Baire property.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  29
    Large cardinals and iteration trees of height ω.Alessandro Andretta - 1991 - Annals of Pure and Applied Logic 54 (1):1-15.
    In this paper we continue the line of work initiated in “Building iteration trees”. It is shown that the existence of a certain kind of iteration tree of height ω is equivalent to the existence of a cardinal δ that is Woodin with respect to functions in the next admissible.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  56
    (1 other version)On large cardinals and partition relations.E. M. Kleinberg & R. A. Shore - 1971 - Journal of Symbolic Logic 36 (2):305-308.
  24.  28
    Implications between strong large cardinal axioms.Richard Laver - 1997 - Annals of Pure and Applied Logic 90 (1-3):79-90.
    The rank-into-rank and stronger large cardinal axioms assert the existence of certain elementary embeddings. By the preservation of the large cardinal properties of the embeddings under certain operations, strong implications between various of these axioms are derived.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  25.  62
    Characterizing large cardinals in terms of layered posets.Sean Cox & Philipp Lücke - 2017 - Annals of Pure and Applied Logic 168 (5):1112-1131.
  26.  53
    Choiceless large cardinals and set‐theoretic potentialism.Raffaella Cutolo & Joel David Hamkins - 2022 - Mathematical Logic Quarterly 68 (4):409-415.
    We define a potentialist system of ‐structures, i.e., a collection of possible worlds in the language of connected by a binary accessibility relation, achieving a potentialist account of the full background set‐theoretic universe V. The definition involves Berkeley cardinals, the strongest known large cardinal axioms, inconsistent with the Axiom of Choice. In fact, as background theory we assume just. It turns out that the propositional modal assertions which are valid at every world of our system are exactly those (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  69
    Fusion and large cardinal preservation.Sy-David Friedman, Radek Honzik & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (12):1247-1273.
    In this paper we introduce some fusion properties of forcing notions which guarantee that an iteration with supports of size ⩽κ not only does not collapse κ+ but also preserves the strength of κ. This provides a general theory covering the known cases of tree iterations which preserve large cardinals [3], Friedman and Halilović [5], Friedman and Honzik [6], Friedman and Magidor [8], Friedman and Zdomskyy [10], Honzik [12]).
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  28.  17
    Weak Covering at Large Cardinals.Ralf ‐ Dieter Schindler - 1997 - Mathematical Logic Quarterly 43 (1):22-28.
    We show that weakly compact cardinals are the smallest large cardinals k where k+ < k+ is impossible provided 0# does not exist. We also show that if k+Kc < k+ for some k being weakly compact , then there is a transitive set M with M ⊨ ZFC + “there is a strong cardinal”.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  42
    On the Symbiosis Between Model-Theoretic and Set-Theoretic Properties of Large Cardinals.Joan Bagaria & Jouko Väänänen - 2016 - Journal of Symbolic Logic 81 (2):584-604.
    We study some large cardinals in terms of reflection, establishing new connections between the model-theoretic and the set-theoretic approaches.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  47
    Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  31.  60
    The downward directed grounds hypothesis and very large cardinals.Toshimichi Usuba - 2017 - Journal of Mathematical Logic 17 (2):1750009.
    A transitive model M of ZFC is called a ground if the universe V is a set forcing extension of M. We show that the grounds ofV are downward set-directed. Consequently, we establish some fundamental theorems on the forcing method and the set-theoretic geology. For instance, the mantle, the intersection of all grounds, must be a model of ZFC. V has only set many grounds if and only if the mantle is a ground. We also show that if the universe (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  32.  63
    Large cardinals and definable counterexamples to the continuum hypothesis.Matthew Foreman & Menachem Magidor - 1995 - Annals of Pure and Applied Logic 76 (1):47-97.
    In this paper we consider whether L(R) has “enough information” to contain a counterexample to the continuum hypothesis. We believe this question provides deep insight into the difficulties surrounding the continuum hypothesis. We show sufficient conditions for L(R) not to contain such a counterexample. Along the way we establish many results about nonstationary towers, non-reflecting stationary sets, generalizations of proper and semiproper forcing and Chang's conjecture.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  33. Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  34.  38
    Large cardinals and lightface definable well-orders, without the gch.Sy-David Friedman, Peter Holy & Philipp Lücke - 2015 - Journal of Symbolic Logic 80 (1):251-284.
  35.  24
    Tameness, powerful images, and large cardinals.Will Boney & Michael Lieberman - 2020 - Journal of Mathematical Logic 21 (1):2050024.
    We provide comprehensive, level-by-level characterizations of large cardinals, in the range from weakly compact to strongly compact, by closure properties of powerful images of accessible functors. In the process, we show that these properties are also equivalent to various forms of tameness for abstract elementary classes. This systematizes and extends results of [W. Boney and S. Unger, Large cardinal axioms from tameness in AECs, Proc. Amer. Math. Soc.145(10) (2017) 4517–4532; A. Brooke-Taylor and J. Rosický, Accessible images revisited, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36. Independence and large cardinals.Peter Koellner - 2010 - Stanford Encyclopedia of Philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  37.  31
    Large cardinals and basic sequences.Jordi Lopez-Abad - 2013 - Annals of Pure and Applied Logic 164 (12):1390-1417.
    The purpose of this paper is to present several applications of combinatorial principles, well-known in Set Theory, to the geometry of infinite dimensional Banach spaces, particularly to the existence of certain basic sequences. We mention also some open problems where set-theoretical techniques are relevant.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38.  63
    Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
  39.  15
    Filters and large cardinals.Jean-Pierre Levinski - 1995 - Annals of Pure and Applied Logic 72 (2):177-212.
    Assuming the consistency of the theory “ZFC + there exists a measurable cardinal”, we construct 1. a model in which the first cardinal κ, such that 2κ > κ+, bears a normal filter F whose associated boolean algebra is κ+-distributive ,2. a model where there is a measurable cardinal κ such that, for every regular cardinal ρ < κ, 2ρ = ρ++ holds,3. a model of “ZFC + GCH” where there exists a non-measurable cardinal κ bearing a normal filter F (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  40.  28
    Virtual large cardinals.Victoria Gitman & Ralf Schindler - 2018 - Annals of Pure and Applied Logic 169 (12):1317-1334.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  41.  28
    Combinatorics on large cardinals.E. Montenegro - 1992 - Journal of Symbolic Logic 57 (2):617-643.
  42. Large cardinals at the brink.W. Hugh Woodin - 2024 - Annals of Pure and Applied Logic 175 (1):103328.
  43. Inner models and large cardinals.Ronald Jensen - 1995 - Bulletin of Symbolic Logic 1 (4):393-407.
    In this paper, we sketch the development of two important themes of modern set theory, both of which can be regarded as growing out of work of Kurt Gödel. We begin with a review of some basic concepts and conventions of set theory.§0. The ordinal numbers were Georg Cantor's deepest contribution to mathematics. After the natural numbers 0, 1, …, n, … comes the first infinite ordinal number ω, followed by ω + 1, ω + 2, …, ω + ω, (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  44.  33
    Some results on consecutive large cardinals.Arthur W. Apter - 1983 - Annals of Pure and Applied Logic 25 (1):1-17.
    We obtain 2 models in which AC is false and in which there are long sequences of consecutive large cardinals.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  45.  22
    Weak covering at large cardinals.Ralf‐Dieter Schindler - 1997 - Mathematical Logic Quarterly 43 (1):22-28.
    We show that weakly compact cardinals are the smallest large cardinals k where k+ < k+ is impossible provided 0# does not exist. We also show that if k+Kc < k+ for some k being weakly compact , then there is a transitive set M with M ⊨ ZFC + “there is a strong cardinal”.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Countable model theory and large cardinals.Harvey Friedman - manuscript
    We can look at this model theoretically as follows. By the linearly ordered predicate calculus, we simply mean ordinary predicate calculus with equality and a special binary relation symbol <. It is required that in all interpretations, < be a linear ordering on the domain. Thus we have the usual completeness theorem provided we add the axioms that assert that < is a linear ordering.
     
    Export citation  
     
    Bookmark  
  47. Finite trees and the necessary use of large cardinals.Harvey Friedman - manuscript
    We introduce insertion domains that support the placement of new, higher, vertices into finite trees. We prove that every nonincreasing insertion domain has an element with simple structural properties in the style of classical Ramsey theory. This result is proved using standard large cardinal axioms that go well beyond the usual axioms for mathematics. We also establish that this result cannot be proved without these large cardinal axioms. We also introduce insertion rules that specify the placement of new, (...)
     
    Export citation  
     
    Bookmark   13 citations  
  48.  77
    Large cardinals and large dilators.Andy Lewis - 1998 - Journal of Symbolic Logic 63 (4):1496-1510.
    Applying Woodin's non-stationary tower notion of forcing, I prove that the existence of a supercompact cardinal κ in V and a Ramsey dilator in some small forcing extension V[G] implies the existence in V of a measurable dilator of size κ, measurable by κ-complete measures.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  49.  25
    Large cardinals and definable well-orders, without the GCH.Sy-David Friedman & Philipp Lücke - 2015 - Annals of Pure and Applied Logic 166 (3):306-324.
  50.  56
    Intrinsic Justifications for Large-Cardinal Axioms.Rupert McCallum - 2021 - Philosophia Mathematica 29 (2):195-213.
    ABSTRACT We shall defend three philosophical theses about the extent of intrinsic justification based on various technical results. We shall present a set of theorems which indicate intriguing structural similarities between a family of “weak” reflection principles roughly at the level of those considered by Tait and Koellner and a family of “strong” reflection principles roughly at the level of those of Welch and Roberts, which we claim to lend support to the view that the stronger reflection principles are intrinsically (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 970