Results for 'Proof presentation'

977 found
Order:
  1.  85
    Another proof that the future can influence the present.C. W. Rietdijk - 1981 - Foundations of Physics 11 (9-10):783-790.
    A modified Young double-slit experiment proposed by Wootters and Zurek is considered in which a system P of parallel plates covered with a photographic emulsion has been set up in the region where we would normally expect the central interference fringes. Because under certain conditions P makes it possible to conclude with much more than50% certainty through which of the two slits each particular photon passed, the relevant interference pattern becomes blurred. It is proved that this implies a retroactive effect (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  28
    Proof and the art of mathematics: examples and extensions.Joel David Hamkins - 2021 - Cambridge, Massachusetts: The MIT Press.
    An introduction to writing proofs, presented through compelling mathematical statements with interesting elementary proofs. This book offers an introduction to the art and craft of proof-writing. The author, a leading research mathematician, presents a series of engaging and compelling mathematical statements with interesting elementary proofs. These proofs capture a wide range of topics, including number theory, combinatorics, graph theory, the theory of games, geometry, infinity, order theory, and real analysis. The goal is to show students and aspiring mathematicians how (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  18
    Proof theory: sequent calculi and related formalisms.Katalin Bimbó - 2015 - Boca Raton: CRC Press, Taylor & Francis Group.
    Sequent calculi constitute an interesting and important category of proof systems. They are much less known than axiomatic systems or natural deduction systems are, and they are much less known than they should be. Sequent calculi were designed as a theoretical framework for investigations of logical consequence, and they live up to the expectations completely as an abundant source of meta-logical results. The goal of this book is to provide a fairly comprehensive view of sequent calculi -- including a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  4.  21
    Numbers and proofs.Reg Allenby - 1997 - New York: Copublished in North, South, and Central America by John Wiley & Sons.
    'Numbers and Proofs' presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others' proofs as well as construct their own. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers (real, rational, complex and integers). An indispensable guide to all students of mathematics. Each proof is preceded by a discussion which is intended to show the reader the kind of thoughts they might (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  5.  79
    Algebraic proofs of cut elimination.Jeremy Avigad - manuscript
    Algebraic proofs of the cut-elimination theorems for classical and intuitionistic logic are presented, and are used to show how one can sometimes extract a constructive proof and an algorithm from a proof that is nonconstructive. A variation of the double-negation translation is also discussed: if ϕ is provable classically, then ¬(¬ϕ)nf is provable in minimal logic, where θnf denotes the negation-normal form of θ. The translation is used to show that cut-elimination theorems for classical logic can be viewed (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  6.  45
    A proof of topological completeness for S4 in.Grigori Mints & Ting Zhang - 2005 - Annals of Pure and Applied Logic 133 (1-3):231-245.
    The completeness of the modal logic S4 for all topological spaces as well as for the real line , the n-dimensional Euclidean space and the segment etc. was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with a further simplification. The proof strategy is to embed a finite rooted Kripke structure for S4 into (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  7. Classical proof forestry.Willem Heijltjes - 2010 - Annals of Pure and Applied Logic 161 (11):1346-1366.
    Classical proof forests are a proof formalism for first-order classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cut-free setting as an economical representation of first-order and higher-order classical proof, defining features of the forests are a strict focus on witnessing terms for quantifiers and the absence of inessential structure, or ‘bureaucracy’.This paper presents classical proof forests as a graphical proof formalism and investigates the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  31
    Proof of a Conjecture on Contextuality in Cyclic Systems with Binary Variables.Janne V. Kujala & Ehtibar N. Dzhafarov - 2016 - Foundations of Physics 46 (3):282-299.
    We present a proof for a conjecture previously formulated by Dzhafarov et al.. The conjecture specifies a measure for the degree of contextuality and a criterion for contextuality in a broad class of quantum systems. This class includes Leggett–Garg, EPR/Bell, and Klyachko–Can–Binicioglu–Shumovsky type systems as special cases. In a system of this class certain physical properties \ are measured in pairs \ \); every property enters in precisely two such pairs; and each measurement outcome is a binary random variable. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  62
    Proof Theory for Functional Modal Logic.Shawn Standefer - 2018 - Studia Logica 106 (1):49-84.
    We present some proof-theoretic results for the normal modal logic whose characteristic axiom is \. We present a sequent system for this logic and a hypersequent system for its first-order form and show that these are equivalent to Hilbert-style axiomatizations. We show that the question of validity for these logics reduces to that of classical tautologyhood and first-order logical truth, respectively. We close by proving equivalences with a Fitch-style proof system for revision theory.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Proof-theoretic semantics for a natural language fragment.Nissim Francez & Roy Dyckhoff - 2010 - Linguistics and Philosophy 33 (6):447-477.
    The paper presents a proof-theoretic semantics (PTS) for a fragment of natural language, providing an alternative to the traditional model-theoretic (Montagovian) semantics (MTS), whereby meanings are truth-condition (in arbitrary models). Instead, meanings are taken as derivability-conditions in a dedicated natural-deduction (ND) proof-system. This semantics is effective (algorithmically decidable), adhering to the meaning as use paradigm, not suffering from several of the criticisms formulated by philosophers of language against MTS as a theory of meaning. In particular, Dummett’s manifestation argument (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  11.  83
    Proofs and Countermodels in Non-Classical Logics.Sara Negri - 2014 - Logica Universalis 8 (1):25-60.
    Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin’s method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  12. Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   57 citations  
  13.  47
    Proof, Meaning and Paradox: Some Remarks.Luca Tranchini - 2019 - Topoi 38 (3):591-603.
    In the present paper, the Fregean conception of proof-theoretic semantics that I developed elsewhere will be revised so as to better reflect the different roles played by open and closed derivations. I will argue that such a conception can deliver a semantic analysis of languages containing paradoxical expressions provided some of its basic tenets are liberalized. In particular, the notion of function underlying the Brouwer–Heyting–Kolmogorov explanation of implication should be understood as admitting functions to be partial. As argued in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  14.  46
    Mathematical Proof as a Form of Appeal to a Scientific Community.Valentin A. Bazhanov - 2012 - Russian Studies in Philosophy 50 (4):56-72.
    The author analyzes proof and argumentation as a form of appeal to a scientific community with deep ethical meaning. He presents proof primarily as an effort to persuade a scientific community rather than a search for true knowledge, as an instrument by which responsibility is taken for the correctness of the thesis being proved, which usually originates in a sudden flash of insight.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  15.  20
    Proof‐theoretic semantics of natural deduction based on inversion.Ernst Zimmermann - 2021 - Theoria 87 (6):1651-1670.
    The article presents a full proof‐theoretic semantics for natural deduction based on an extended inversion principle: the elimination rule for an operator q may invert the introduction rule for q, but also vice versa, the introduction rule for a connective q may invert the elimination rule for q. Such an inversion—extending Prawitz' concept of inversion—gives the following theorem: Inversion for two rules of operator q (intro rule, elim rule) exists iff a reduction of a maximum formula for q exists. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  49
    Language, Proof, and Logic.Dave Barker-Plummer - 1999 - New York and London: CSLI Publications. Edited by Jon Barwise & John Etchemendy.
    __Language Proof and Logic_ is available as a physical book with the software included on CD and as a downloadable package of software plus the book in PDF format. The all-electronic version is available from Openproof at ggweb.stanford.edu._ The textbook/software package covers first-order language in a method appropriate for first and second courses in logic. An on-line grading services instantly grades solutions to hundred of computer exercises. It is designed to be used by philosophy instructors teaching a logic course (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  29
    Proof complexity.Jan Krajíček - 2019 - New York, NY: Cambridge University Press.
    Proof complexity is a rich subject drawing on methods from logic, combinatorics, algebra and computer science. This self-contained book presents the basic concepts, classical results, current state of the art and possible future directions in the field. It stresses a view of proof complexity as a whole entity rather than a collection of various topics held together loosely by a few notions, and it favors more generalizable statements. Lower bounds for lengths of proofs, often regarded as the key (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  88
    Proof Systems for Exact Entailment.Johannes Korbmacher - 2023 - Review of Symbolic Logic 16 (4):1260-1295.
    We present a series of proof systems for exact entailment (i.e. relevant truthmaker preservation from premises to conclusion) and prove soundness and completeness. Using the proof systems, we observe that exact entailment is not only hyperintensional in the sense of Cresswell but also in the sense recently proposed by Odintsov and Wansing.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  36
    A Cut-free Proof System for Bounded Metric Temporal Logic Over a Dense Time Domain.Franco Montagna, G. Michele Pinna & Elisa B. P. Tiezzi - 2000 - Mathematical Logic Quarterly 46 (2):171-182.
    We present a complete and cut-free proof-system for a fragment of MTL, where modal operators are only labelled by bounded intervals with rational endpoints.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  17
    (1 other version)Proof theory.Gaisi Takeuti - 1975 - New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co..
    This comprehensive monograph is a cornerstone in the area of mathematical logic and related fields. Focusing on Gentzen-type proof theory, the book presents a detailed overview of creative works by the author and other 20th-century logicians that includes applications of proof theory to logic as well as other areas of mathematics. 1975 edition.
    Direct download  
     
    Export citation  
     
    Bookmark   127 citations  
  21.  15
    An introduction to proof through real analysis.Daniel J. Madden - 2017 - Hoboken, NJ: Wiley. Edited by Jason A. Aubrey.
    An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  22. Knowledge of Mathematics without Proof.Alexander Paseau - 2015 - British Journal for the Philosophy of Science 66 (4):775-799.
    Mathematicians do not claim to know a proposition unless they think they possess a proof of it. For all their confidence in the truth of a proposition with weighty non-deductive support, they maintain that, strictly speaking, the proposition remains unknown until such time as someone has proved it. This article challenges this conception of knowledge, which is quasi-universal within mathematics. We present four arguments to the effect that non-deductive evidence can yield knowledge of a mathematical proposition. We also show (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  23. Proof Analysis in Modal Logic.Sara Negri - 2005 - Journal of Philosophical Logic 34 (5-6):507-544.
    A general method for generating contraction- and cut-free sequent calculi for a large family of normal modal logics is presented. The method covers all modal logics characterized by Kripke frames determined by universal or geometric properties and it can be extended to treat also Gödel-Löb provability logic. The calculi provide direct decision methods through terminating proof search. Syntactic proofs of modal undefinability results are obtained in the form of conservativity theorems.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   104 citations  
  24.  98
    Proof nets for the multimodal Lambek calculus.Richard Moot & Quintijn Puite - 2002 - Studia Logica 71 (3):415-442.
    We present a novel way of using proof nets for the multimodal Lambek calculus, which provides a general treatment of both the unary and binary connectives. We also introduce a correctness criterion which is valid for a large class of structural rules and prove basic soundness, completeness and cut elimination results. Finally, we will present a correctness criterion for the original Lambek calculus Las an instance of our general correctness criterion.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  25.  90
    (1 other version)Optimal proofs of determinacy.Itay Neeman - 1995 - Bulletin of Symbolic Logic 1 (3):327-339.
    In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L.The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  26.  44
    A proof of Shelah's partition theorem.Menachem Kojman - 1995 - Archive for Mathematical Logic 34 (4):263-268.
    A self contained proof of Shelah's theorem is presented: If μ is a strong limit singular cardinal of uncountable cofinality and 2μ > μ+ then $\left( {\begin{array}{*{20}c} {\mu ^ + } \\ \mu \\ \end{array} } \right) \to \left( {\begin{array}{*{20}c} {\mu ^ + } \\ {\mu + 1} \\ \end{array} } \right)_{< cf\mu } $.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  45
    Proof Mining in Topological Dynamics.Philipp Gerhardy - 2008 - Notre Dame Journal of Formal Logic 49 (4):431-446.
    A famous theorem by van der Waerden states the following: Given any finite coloring of the integers, one color contains arbitrarily long arithmetic progressions. Equivalently, for every q,k, there is an N = N(q,k) such that for every q-coloring of an interval of length N one color contains a progression of length k. An obvious question is what is the growth rate of N = N(q,k). Some proofs, like van der Waerden's combinatorial argument, answer this question directly, while the topological (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  43
    Proof by Assumption of the Possible in Prior Analytics, 1.15; How Not to Blend Modal Frameworks.Doukas Kapantais & George Karamanolis - 2020 - History and Philosophy of Logic 41 (3):203-216.
    The present paper aims to show that the reconstruction of the formal framework of the proofs in Pr. An. 1.15, as proposed by Malink and Rosen 2013 (‘Proof by Assumption of the Possible in Prior Analytics 1.15’, Mind, 122, 953-85) is due to affront a double impasse. Malink and Rosen argue convincingly that Aristotle operates with two different modal frameworks, one as found in the system of modal logic presented in Prior Analytics 1.3 and 8-22, and one occurring in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  43
    Proof theory of modal logic.Heinrich Wansing (ed.) - 1996 - Boston: Kluwer Academic Publishers.
    Proof Theory of Modal Logic is devoted to a thorough study of proof systems for modal logics, that is, logics of necessity, possibility, knowledge, belief, time, computations etc. It contains many new technical results and presentations of novel proof procedures. The volume is of immense importance for the interdisciplinary fields of logic, knowledge representation, and automated deduction.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  30.  76
    Two more proofs of present qualia.Edmond Wright - 1990 - Theoria 56 (1-2):3-22.
    Now in so far as it is recognized that the constituents of the environment are not present inside the body in the same way as they are present outside it, to that extent they are bound, the moment they are inside it, to become something essentially different from the environment.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Proof theory in the USSR 1925–1969.Grigori Mints - 1991 - Journal of Symbolic Logic 56 (2):385-424.
    We present a survey of proof theory in the USSR beginning with the paper by Kolmogorov [1925] and ending (mostly) in 1969; the last two sections deal with work done by A. A. Markov and N. A. Shanin in the early seventies, providing a kind of effective interpretation of negative arithmetic formulas. The material is arranged in chronological order and subdivided according to topics of investigation. The exposition is more detailed when the work is little known in the West (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  32.  52
    A proof-search procedure for intuitionistic propositional logic.R. Alonderis - 2013 - Archive for Mathematical Logic 52 (7-8):759-778.
    A sequent root-first proof-search procedure for intuitionistic propositional logic is presented. The procedure is obtained from modified intuitionistic multi-succedent and classical sequent calculi, making use of Glivenko’s Theorem. We prove that a sequent is derivable in a standard intuitionistic multi-succedent calculus if and only if the corresponding prefixed-sequent is derivable in the procedure.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  64
    The proof-theoretic analysis of transfinitely iterated fixed point theories.Gerhard Jager, Reinhard Kahle, Anton Setzer & Thomas Strahm - 1999 - Journal of Symbolic Logic 64 (1):53-67.
    This article provides the proof-theoretic analysis of the transfinitely iterated fixed point theories $\widehat{ID}_\alpha and \widehat{ID}_{ the exact proof-theoretic ordinals of these systems are presented.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  34.  93
    A proof-theoretic study of the correspondence of classical logic and modal logic.H. Kushida & M. Okada - 2003 - Journal of Symbolic Logic 68 (4):1403-1414.
    It is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints' result to the basic modal logic S4; (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  35.  32
    Proof, Semiotics, and the Computer: On the Relevance and Limitation of Thought Experiment in Mathematics.Johannes Lenhard - 2022 - Axiomathes 32 (1):29-42.
    This contribution defends two claims. The first is about why thought experiments are so relevant and powerful in mathematics. Heuristics and proof are not strictly and, therefore, the relevance of thought experiments is not contained to heuristics. The main argument is based on a semiotic analysis of how mathematics works with signs. Seen in this way, formal symbols do not eliminate thought experiments (replacing them by something rigorous), but rather provide a new stage for them. The formal world resembles (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  78
    Burden of proof.DouglasN Walton - 1988 - Argumentation 2 (2):233-254.
    This paper presents an analysis of the concept of burden of proof in argument. Relationship of burden of proof to three traditional informal fallacies is considered: (i) argumentum ad hominem, (ii) petitio principii, and (iii) argumentum ad ignorantiam. Other topics discussed include persuasive dialoque, pragmatic reasoning, legal burden of proof, plausible reasoning in regulated disputes, rules of dialogue, and the value of reasoned dialogue.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  37.  18
    100% Mathematical Proof.Rowan Garnier & John Taylor - 1996 - John Wiley & Son.
    "Proof" has been and remains one of the concepts which characterises mathematics. Covering basic propositional and predicate logic as well as discussing axiom systems and formal proofs, the book seeks to explain what mathematicians understand by proofs and how they are communicated. The authors explore the principle techniques of direct and indirect proof including induction, existence and uniqueness proofs, proof by contradiction, constructive and non-constructive proofs, etc. Many examples from analysis and modern algebra are included. The exceptionally (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  86
    Canonical proof nets for classical logic.Richard McKinley - 2013 - Annals of Pure and Applied Logic 164 (6):702-732.
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that there should be a canonical function from sequent proofs to proof nets, it should be possible to check (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  7
    (1 other version)Scott Dana. Completeness proofs for the intuitionistic sentential calculus. Summaries of talks presented at the Summer Institute for Symbolic Logic, Cornell University, 1957, 2nd edn., Communications Research Division, Institute for Defense Analyses, Princeton, N.J., 1960, pp. 231–241. [REVIEW]Gene F. Rose - 1960 - Journal of Symbolic Logic 25 (4):351-351.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40.  80
    Proof Analysis: A Contribution to Hilbert's Last Problem.Sara Negri & Jan von Plato - 2011 - Cambridge and New York: Cambridge University Press. Edited by Jan Von Plato.
    This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. (...)
  41.  31
    Normal Proofs and Tableaux for the Font-Rius Tetravalent Modal Logic.Marcelo E. Coniglio & Martin Figallo - forthcoming - Logic and Logical Philosophy:1-33.
    Tetravalent modal logic (TML) was introduced by Font and Rius in 2000. It is an expansion of the Belnap-Dunn four-valued logic FOUR, a logical system that is well-known for the many applications found in several fields. Besides, TML is the logic that preserves degrees of truth with respect to Monteiro’s tetravalent modal algebras. Among other things, Font and Rius showed that TML has a strongly adequate sequent system, but unfortunately this system does not enjoy the cut-elimination property. However, in a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42. Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  43. Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  78
    The insolubility proof of the quantum measurement problem.Harvey R. Brown - 1986 - Foundations of Physics 16 (9):857-870.
    Modern insolubility proofs of the measurement problem in quantum mechanics not only differ in their complexity and degree of generality, but also reveal a lack of agreement concerning the fundamental question of what constitutes such a proof. A systematic reworking of the (incomplete) 1970 Fine theorem is presented, which is intended to go some way toward clarifying the issue.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  45.  29
    Defining a Relativity-Proof Notion of the Present via Spatio-temporal Indeterminism.Thomas Müller - 2020 - Foundations of Physics 50 (6):644-664.
    In this paper we describe a novel approach to defining an ontologically fundamental notion of co-presentness that does not go against the tenets of relativity theory. We survey the possible reactions to the problem of the present in relativity theory, introducing a terminological distinction between a static role of the present, which is served by the relation of simultaneity, and a dynamic role of the present, with the corresponding relation of co-presentness. We argue that both of these relations need to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  75
    Lectures on the proofs of the existence of God.Georg Wilhelm Friedrich Hegel (ed.) - 2007 - New York: Oxford University Press.
    The Hegel Lectures Series Series Editor: Peter C. Hodgson Hegel's lectures have had as great a historical impact as the works he himself published. Important elements of his system are elaborated only in the lectures, especially those given in Berlin during the last decade of his life. The original editors conflated materials from different sources and dates, obscuring the development and logic of Hegel's thought. The Hegel Lectures series is based on a selection of extant and recently discovered transcripts and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  47. A proof system for contact relation algebras.Ivo Düntsch & Ewa Orłowska - 2000 - Journal of Philosophical Logic 29 (3):241-262.
    Contact relations have been studied in the context of qualitative geometry and physics since the early 1920s, and have recently received attention in qualitative spatial reasoning. In this paper, we present a sound and complete proof system in the style of Rasiowa and Sikorski (1963) for relation algebras generated by a contact relation.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  48.  47
    Proof-theoretic analysis of the quantified argument calculus.Edi Pavlović & Norbert Gratzl - 2019 - Review of Symbolic Logic 12 (4):607-636.
    This article investigates the proof theory of the Quantified Argument Calculus as developed and systematically studied by Hanoch Ben-Yami [3, 4]. Ben-Yami makes use of natural deduction, we, however, have chosen a sequent calculus presentation, which allows for the proofs of a multitude of significant meta-theoretic results with minor modifications to the Gentzen’s original framework, i.e., LK. As will be made clear in course of the article LK-Quarc will enjoy cut elimination and its corollaries.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  49.  41
    (1 other version)Well-ordering proofs for Martin-Löf type theory.Anton Setzer - 1998 - Annals of Pure and Applied Logic 92 (2):113-159.
    We present well-ordering proofs for Martin-Löf's type theory with W-type and one universe. These proofs, together with an embedding of the type theory in a set theoretical system as carried out in Setzer show that the proof theoretical strength of the type theory is precisely ψΩ1Ω1 + ω, which is slightly more than the strength of Feferman's theory T0, classical set theory KPI and the subsystem of analysis + . The strength of intensional and extensional version, of the version (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  50. Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
1 — 50 / 977