Results for 'Subvariety lattice'

971 found
Order:
  1.  65
    The Lattice of Subvarieties of √′ quasi-MV Algebras.T. Kowalski, F. Paoli, R. Giuntini & A. Ledda - 2010 - Studia Logica 95 (1-2):37 - 61.
    In the present paper we continue the investigation of the lattice of subvarieties of the variety of √′ P quasi-MV algebras, already started in [6]. Beside some general results on the structure of such a lattice, the main contribution of this work is the solution of a long-standing open problem concerning these algebras: namely, we show that the variety generated by the standard disk algebra D r is not finitely based, and we provide an infinite equational basis for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  45
    The Lattice of Subvarieties of the Variety Defined by Externally Compatible Identities of Abelian Groups of Exponent n.Katarzyna Gajewska-Kurdziel & Krystyna Mruczek-Nasieniewska - 2007 - Studia Logica 85 (3):361-379.
    The lattices of varieties were studied in many works (see [4], [5], [11], [24], [31]). In this paper we describe the lattice of all subvarieties of the variety $G_{Ex}^n$ defined by so called externally compatible identities of Abelian groups and the identity xⁿ ≈ yxⁿ. The notation in this paper is the same as in [2].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  31
    Unification on Subvarieties of Pseudocomplemented Distributive Lattices.Leonardo Cabrer - 2016 - Notre Dame Journal of Formal Logic 57 (4):477-502.
    In this paper subvarieties of pseudocomplemented distributive lattices are classified by their unification type. We determine the unification type of every particular unification problem in each subvariety of pseudocomplemented distributive lattices.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  4.  54
    BK-lattices. Algebraic Semantics for Belnapian Modal Logics.Sergei P. Odintsov & E. I. Latkin - 2012 - Studia Logica 100 (1-2):319-338.
    Earlier algebraic semantics for Belnapian modal logics were defined in terms of twist-structures over modal algebras. In this paper we introduce the class of BK -lattices, show that this class coincides with the abstract closure of the class of twist-structures, and it forms a variety. We prove that the lattice of subvarieties of the variety of BK -lattices is dually isomorphic to the lattice of extensions of Belnapian modal logic BK . Finally, we describe invariants determining a twist-structure (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  5.  41
    Minimal Varieties of Representable Commutative Residuated Lattices.Rostislav Horčík - 2012 - Studia Logica 100 (6):1063-1078.
    We solve several open problems on the cardinality of atoms in the subvariety lattice of residuated lattices and FL-algebras [4, Problems 17—19, pp. 437]. Namely, we prove that the subvariety lattice of residuated lattices contains continuum many 4-potent commutative representable atoms. Analogous results apply also to atoms in the subvariety lattice of FL i -algebras and FL o -algebras. On the other hand, we show that the subvariety lattice of residuated lattices contains (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  6.  35
    Subvarieties of BL-algebras generated by single-component chains.Antonio Di Nola, Francesc Esteva, Pere Garcia, Lluís Godo & Salvatore Sessa - 2002 - Archive for Mathematical Logic 41 (7):673-685.
    In this paper we study and equationally characterize the subvarieties of BL, the variety of BL-algebras, which are generated by families of single-component BL-chains, i.e. MV-chains, Product-chain or Gödel-chains. Moreover, it is proved that they form a segment of the lattice of subvarieties of BL which is bounded by the Boolean variety and the variety generated by all single-component chains, called ŁΠG.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  22
    On subvarieties of symmetric closure algebras.J. P. Dı́az Varela - 2001 - Annals of Pure and Applied Logic 108 (1-3):137-152.
    The aim of this paper is to investigate the variety of symmetric closure algebras, that is, closure algebras endowed with a De Morgan operator. Some general properties are derived. Particularly, the lattice of subvarieties of the subvariety of monadic symmetric algebras is described and an equational basis for each subvariety is given.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8.  59
    ★-autonomous Lattices.Francesco Paoli - 2005 - Studia Logica 79 (2):283-304.
    -autonomous lattices are the algebraic exponentials and without additive constants. In this paper, we investigate the structure theory of this variety and some of its subvarieties, as well as its relationships with other classes of algebras.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Minimal Varieties of Involutive Residuated Lattices.Constantine Tsinakis & Annika M. Wille - 2006 - Studia Logica 83 (1-3):407-423.
    We establish the existence uncountably many atoms in the subvariety lattice of the variety of involutive residuated lattices. The proof utilizes a construction used in the proof of the corresponding result for residuated lattices and is based on the fact that every residuated lattice with greatest element can be associated in a canonical way with an involutive residuated lattice.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  10.  63
    Bounded distributive lattices with strict implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
    The present paper introduces and studies the variety WH of weakly Heyting algebras. It corresponds to the strict implication fragment of the normal modal logic K which is also known as the subintuitionistic local consequence of the class of all Kripke models. The tools developed in the paper can be applied to the study of the subvarieties of WH; among them are the varieties determined by the strict implication fragments of normal modal logics as well as varieties that do not (...)
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
  11.  16
    A note on a subvariety of linear tense algebras.Marta A. Zander - 2005 - Mathematical Logic Quarterly 51 (1):104-108.
    In [1], Bull gave completeness proofs for three axiom systems with respect to tense logic with time linear and rational, real and integral. The associated varieties, Dens, Cont and Disc, are generated by algebras with frames {ℚ, }, {ℝ, } and {ℤ, }, respectively. In this paper we consider the subvariety [MATHEMATICAL SCRIPT CAPITAL V] generated by the finite members of Disc. We prove that V is locally finite and we determine its lattice of subvarieties. We also prove (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  20
    Sub-Hilbert Lattices.José Luis Castiglioni, Víctor Fernández, Héctor Federico Mallea & Hernán Javier San Martín - 2023 - Studia Logica 111 (3):431-452.
    A hemi-implicative lattice is an algebra \((A,\wedge,\vee,\rightarrow,1)\) of type (2, 2, 2, 0) such that \((A,\wedge,\vee,1)\) is a lattice with top and for every \(a,b\in A\), \(a\rightarrow a = 1\) and \(a\wedge (a\rightarrow b) \le b\). A new variety of hemi-implicative lattices, here named sub-Hilbert lattices, containing both the variety generated by the \(\{\wedge,\vee,\rightarrow,1\}\) -reducts of subresiduated lattices and that of Hilbert lattices as proper subvarieties is defined. It is shown that any sub-Hilbert lattice is determined (up (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  16
    Residuated Structures and Orthomodular Lattices.D. Fazio, A. Ledda & F. Paoli - 2021 - Studia Logica 109 (6):1201-1239.
    The variety of residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., \-groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated \-groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated \-groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  32
    Commutative integral bounded residuated lattices with an added involution.Roberto Cignoli & Francesc Esteva - 2010 - Annals of Pure and Applied Logic 161 (2):150-160.
    A symmetric residuated lattice is an algebra such that is a commutative integral bounded residuated lattice and the equations x=x and =xy are satisfied. The aim of the paper is to investigate the properties of the unary operation ε defined by the prescription εx=x→0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive →0)=1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  15.  61
    On ockham algebras: Congruence lattices and subdirectly irreducible algebras.P. Garcia & F. Esteva - 1995 - Studia Logica 55 (2):319 - 346.
    Distributive bounded lattices with a dual homomorphism as unary operation, called Ockham algebras, were firstly studied by Berman (1977). The varieties of Boolean algebras, De Morgan algebras, Kleene algebras and Stone algebras are some of the well known subvarieties of Ockham algebra. In this paper, new results about the congruence lattice of Ockham algebras are given. From these results and Urquhart's representation theorem for Ockham algebras a complete characterization of the subdirectly irreducible Ockham algebras is obtained. These results are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16.  63
    Varieties of Commutative Integral Bounded Residuated Lattices Admitting a Boolean Retraction Term.Roberto Cignoli & Antoni Torrens - 2012 - Studia Logica 100 (6):1107-1136.
    Let ${\mathbb{BRL}}$ denote the variety of commutative integral bounded residuated lattices (bounded residuated lattices for short). A Boolean retraction term for a subvariety ${\mathbb{V}}$ of ${\mathbb{BRL}}$ is a unary term t in the language of bounded residuated lattices such that for every ${{\bf A} \in \mathbb{V}, t^{A}}$ , the interpretation of the term on A, defines a retraction from A onto its Boolean skeleton B(A). It is shown that Boolean retraction terms are equationally definable, in the sense that there (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Abelian Logic and the Logics of Pointed Lattice-Ordered Varieties.Francesco Paoli, Matthew Spinks & Robert Veroff - 2008 - Logica Universalis 2 (2):209-233.
    We consider the class of pointed varieties of algebras having a lattice term reduct and we show that each such variety gives rise in a natural way, and according to a regular pattern, to at least three interesting logics. Although the mentioned class includes several logically and algebraically significant examples (e.g. Boolean algebras, MV algebras, Boolean algebras with operators, residuated lattices and their subvarieties, algebras from quantum logic or from depth relevant logic), we consider here in greater detail Abelian (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  18.  15
    On PBZ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}–Lattices. [REVIEW]Roberto Giuntini, Claudia Mureşan & Francesco Paoli - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 313-337.
    We continue our investigation of paraorthomodular BZ*-lattices PBZ*-lattices, started in Giuntini et al., Mureşan. We shed further light on the structure of the subvariety lattice of the variety PBZL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {PBZL}^{\mathbb {*}}$$\end{document} of PBZ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}–lattices; in particular, we provide axiomatic bases for some of its members. Further, we show that some distributive subvarieties of PBZL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  19.  60
    The Variety of Lattice Effect Algebras Generated by MV-algebras and the Horizontal Sum of Two 3-element Chains.Radomír Halaš - 2008 - Studia Logica 89 (1):19-35.
    It has been recently shown [4] that the lattice effect algebras can be treated as a subvariety of the variety of so-called basic algebras. The open problem whether all subdirectly irreducible distributive lattice effect algebras are just subdirectly irreducible MV-chains and the horizontal sum of two 3-element chains is in the paper transferred into a more tractable one. We prove that modulo distributive lattice effect algebras, the variety generated by MV-algebras and is definable by three simple (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  20.  8
    Distributive PBZ $$^{*}$$ -lattices.Claudia Mureşan - 2024 - Studia Logica 112 (6):1319-1341.
    Arising in the study of Quantum Logics, PBZ \(^{*}\) -_lattices_ are the paraorthomodular Brouwer–Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the Strong De Morgan condition with respect to the Brouwer complement. They form a variety \(\mathbb {PBZL}^{*}\) which includes that of orthomodular lattices considered with an extended signature (by endowing them with a Brouwer complement coinciding with their Kleene complement), as well as antiortholattices (whose Brouwer complements are trivial). The former turn out to have (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  2
    Distributive PBZ$$^{*}$$-lattices.Claudia Mureşan - 2024 - Studia Logica 112 (6):1319-1341.
    Arising in the study of Quantum Logics, PBZ $$^{*}$$ -lattices are the paraorthomodular Brouwer–Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the Strong De Morgan condition with respect to the Brouwer complement. They form a variety $$\mathbb {PBZL}^{*}$$ which includes that of orthomodular lattices considered with an extended signature (by endowing them with a Brouwer complement coinciding with their Kleene complement), as well as antiortholattices (whose Brouwer complements are trivial). The former turn out to have (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  49
    Birkhoff-like sheaf representation for varieties of lattice expansions.Hector Gramaglia & Diego Vaggione - 1996 - Studia Logica 56 (1-2):111 - 131.
    Given a variety we study the existence of a class such that S1 every A can be represented as a global subdirect product with factors in and S2 every non-trivial A is globally indecomposable. We show that the following varieties (and its subvarieties) have a class satisfying properties S1 and S2: p-algebras, distributive double p-algebras of a finite range, semisimple varieties of lattice expansions such that the simple members form a universal class (bounded distributive lattices, De Morgan algebras, etc) (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23.  40
    On Categorical Equivalence of Weak Monadic Residuated Distributive Lattices and Weak Monadic c-Differential Residuated Distributive Lattices.Jun Tao Wang, Yan Hong She, Peng Fei He & Na Na Ma - 2023 - Studia Logica 111 (3):361-390.
    The category \(\mathbb {DRDL}{'}\), whose objects are c-differential residuated distributive lattices satisfying the condition \(\textbf{CK}\), is the image of the category \(\mathbb {RDL}\), whose objects are residuated distributive lattices, under the categorical equivalence \(\textbf{K}\) that is constructed in Castiglioni et al. (Stud Log 90:93–124, 2008). In this paper, we introduce weak monadic residuated lattices and study some of their subvarieties. In particular, we use the functor \(\textbf{K}\) to relate the category \(\mathbb {WMRDL}\), whose objects are weak monadic residuated distributive lattices, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  19
    On the variety of strong subresiduated lattices.Sergio Celani & Hernán J. San Martín - 2023 - Mathematical Logic Quarterly 69 (2):207-220.
    A subresiduated lattice is a pair, where A is a bounded distributive lattice, D is a bounded sublattice of A and for every there exists the maximum of the set, which is denoted by. This pair can be regarded as an algebra of type (2, 2, 2, 0, 0), where. The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. Finite axiomatizability of logics of distributive lattices with negation.Sérgio Marcelino & Umberto Rivieccio - forthcoming - Logic Journal of the IGPL.
    This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite. On the negative side, we provide a syntactic condition on the equational presentation of a variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic of all distributive lattices with negation is not finitely axiomatizable; we likewise establish (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26.  51
    Quasivarieties of Modules Over Path Algebras of Quivers.Keith A. Kearnes - 2006 - Studia Logica 83 (1-3):333-349.
    Let FΛ be a finite dimensional path algebra of a quiver Λ over a field F. Let L and R denote the varieties of all left and right FΛ-modules respectively. We prove the equivalence of the following statements. • The subvariety lattice of L is a sublattice of the subquasivariety lattice of L. • The subquasivariety lattice of R is distributive. • Λ is an ordered forest.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27.  26
    Varieties of de Morgan monoids: Covers of atoms.T. Moraschini, J. G. Raftery & J. J. Wannenburg - 2020 - Review of Symbolic Logic 13 (2):338-374.
    The variety DMM of De Morgan monoids has just four minimal subvarieties. The join-irreducible covers of these atoms in the subvariety lattice of DMM are investigated. One of the two atoms consisting of idempotent algebras has no such cover; the other has just one. The remaining two atoms lack nontrivial idempotent members. They are generated, respectively, by 4-element De Morgan monoids C4 and D4, where C4 is the only nontrivial 0-generated algebra onto which finitely subdirectly irreducible De Morgan (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  46
    Archimedean classes in integral commutative residuated chains.Rostislav Horčík & Franco Montagna - 2009 - Mathematical Logic Quarterly 55 (3):320-336.
    This paper investigates a quasi-variety of representable integral commutative residuated lattices axiomatized by the quasi-identity resulting from the well-known Wajsberg identity → q ≤ → p if it is written as a quasi-identity, i. e., → q ≈ 1 ⇒ → p ≈ 1. We prove that this quasi-identity is strictly weaker than the corresponding identity. On the other hand, we show that the resulting quasi-variety is in fact a variety and provide an axiomatization. The obtained results shed some light (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  24
    Varieties of pseudocomplemented Kleene algebras.Diego Castaño, Valeria Castaño, José Patricio Díaz Varela & Marcela Muñoz Santis - 2021 - Mathematical Logic Quarterly 67 (1):88-104.
    In this paper we study the subdirectly irreducible algebras in the variety of pseudocomplemented De Morgan algebras by means of their De Morgan p‐spaces. We introduce the notion of the body of an algebra and determine when is subdirectly irreducible. As a consequence of this, in the case of pseudocomplemented Kleene algebras, two special subvarieties arise naturally, for which we give explicit identities that characterise them. We also introduce a subvariety of, namely the variety of bundle pseudocomplemented Kleene algebras, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  24
    Quasi‐Stone algebras.Nalinaxi H. Sankappanavar & Hanamantagouda P. Sankappanavar - 1993 - Mathematical Logic Quarterly 39 (1):255-268.
    The purpose of this paper is to define and investigate the new class of quasi-Stone algebras . Among other things we characterize the class of simple QSA's and the class of subdirectly irreducible QSA's. It follows from this characterization that the subdirectly irreducible QSA's form an elementary class and that the variety of QSA's is locally finite. Furthermore we prove that the lattice of subvarieties of QSA's is an -chain. MSC: 03G25, 06D16, 06E15.
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  31.  47
    On Birkhoff’s Common Abstraction Problem.F. Paoli & C. Tsinakis - 2012 - Studia Logica 100 (6):1079-1105.
    In his milestone textbook Lattice Theory, Garrett Birkhoff challenged his readers to develop a "common abstraction" that includes Boolean algebras and lattice-ordered groups as special cases. In this paper, after reviewing the past attempts to solve the problem, we provide our own answer by selecting as common generalization of ������������ and ������������ their join ������������∨������������ in the lattice of subvarieties of ������ℒ (the variety of FL-algebras); we argue that such a solution is optimal under several respects and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  32.  9
    Free Constructions in Hoops via $$\ell $$-Groups.Valeria Giustarini, Francesco Manfucci & Sara Ugolini - forthcoming - Studia Logica:1-49.
    Lattice-ordered abelian groups, or abelian$$\ell $$ ℓ -groups in what follows, are categorically equivalent to two classes of 0-bounded hoops that are relevant in the realm of the equivalent algebraic semantics of many-valued logics: liftings of cancellative hoops and perfect MV-algebras. The former generate the variety of product algebras, and the latter the subvariety of MV-algebras generated by perfect MV-algebras, that we shall call $$\textsf{DLMV}$$ DLMV. In this work we focus on these two varieties and their relation to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  16
    Most Simple Extensions of Are Undecidable.Nikolaos Galatos & Gavin St John - 2022 - Journal of Symbolic Logic 87 (3):1156-1200.
    All known structural extensions of the substructural logic $\textbf{FL}_{\textbf{e}}$, the Full Lambek calculus with exchange/commutativity (corresponding to subvarieties of commutative residuated lattices axiomatized by $\{\vee, \cdot, 1\}$ -equations), have decidable theoremhood; in particular all the ones defined by knotted axioms enjoy strong decidability properties (such as the finite embeddability property). We provide infinitely many such extensions that have undecidable theoremhood, by encoding machines with undecidable halting problem. An even bigger class of extensions is shown to have undecidable deducibility problem (the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  44
    Externally compatible Abelian groups of the type (2,1,0).Krystyna Mruczek-Nasieniewska - 2006 - Logic and Logical Philosophy 15 (3):239-250.
    In [4] the lattice of all subvarieties of the variety G n Ex defined by so called externally compatible identities of Abelian groups together with the identity x n ≈ y n , for any n ∈ N and n ≥ 1 was described. In that paper classes of models of the type (2,1) where considered. It appears that diagrams of lattices of subvariaties defined by externally compatible identities satisfied in a given equational theory depend on the language of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  35.  51
    A Deterministic Weakening of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2019 - Studia Logica 107 (2):283-312.
    A deterministic weakening \ of the Belnap–Dunn four-valued logic \ is introduced to formalize the acceptance and rejection of a proposition at a state in a linearly ordered informational frame with persistent valuations. The logic \ is formalized as a sequent calculus. The completeness and decidability of \ with respect to relational semantics are shown in terms of normal forms. From an algebraic perspective, the class of all algebras for \ is described, and found to be a subvariety of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  36. Fragments of quasi-Nelson: residuation.U. Rivieccio - 2023 - Journal of Applied Non-Classical Logics 33 (1):52-119.
    Quasi-Nelson logic (QNL) was recently introduced as a common generalisation of intuitionistic logic and Nelson's constructive logic with strong negation. Viewed as a substructural logic, QNL is the axiomatic extension of the Full Lambek Calculus with Exchange and Weakening by the Nelson axiom, and its algebraic counterpart is a variety of residuated lattices called quasi-Nelson algebras. Nelson's logic, in turn, may be obtained as the axiomatic extension of QNL by the double negation (or involutivity) axiom, and intuitionistic logic as the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  46
    Countably Many Weakenings of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2020 - Studia Logica 108 (2):163-198.
    Every Berman’s variety \ which is the subvariety of Ockham algebras defined by the equation \ and \) determines a finitary substitution invariant consequence relation \. A sequent system \ is introduced as an axiomatization of the consequence relation \. The system \ is characterized by a single finite frame \ under the frame semantics given for the formal language. By the duality between frames and algebras, \ can be viewed as a \-valued logic as it is characterized by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  38.  25
    On self‐distributive weak Heyting algebras.Mohsen Nourany, Shokoofeh Ghorbani & Arsham Borumand Saeid - 2023 - Mathematical Logic Quarterly 69 (2):192-206.
    We use the left self‐distributive axiom to introduce and study a special class of weak Heyting algebras, called self‐distributive weak Heyting algebras (SDWH‐algebras). We present some useful properties of SDWH‐algebras and obtain some equivalent conditions of them. A characteristic of SDWH‐algebras of orders 3 and 4 is given. Finally, we study the relation between the variety of SDWH‐algebras and some of the known subvarieties of weak Heyting algebras such as the variety of Heyting algebras, the variety of basic algebras, the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  91
    Substructural Fuzzy Logics.George Metcalfe & Franco Montagna - 2007 - Journal of Symbolic Logic 72 (3):834 - 864.
    Substructural fuzzy logics are substructural logics that are complete with respect to algebras whose lattice reduct is the real unit interval [0.1]. In this paper, we introduce Uninorm logic UL as Multiplicative additive intuitionistic linear logic MAILL extended with the prelinearity axiom ((A → B) ∧ t) ∨ ((B → A) ∧ t). Axiomatic extensions of UL include known fuzzy logics such as Monoidal t-norm logic MTL and Gödel logic G, and new weakening-free logics. Algebraic semantics for these logics (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  40.  96
    Basic Hoops: an Algebraic Study of Continuous t-norms.P. Aglianò, I. M. A. Ferreirim & F. Montagna - 2007 - Studia Logica 87 (1):73-98.
    A continuoxis t- norm is a continuous map * from [0, 1]² into [0,1] such that is a commutative totally ordered monoid. Since the natural ordering on [0,1] is a complete lattice ordering, each continuous t-norm induces naturally a residuation → and becomes a commutative naturally ordered residuated monoid, also called a hoop. The variety of basic hoops is precisely the variety generated by all algebras, where * is a continuous t-norm. In this paper we investigate the structure of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  41.  47
    Pretabular varieties of modal algebras.W. J. Blok - 1980 - Studia Logica 39 (2-3):101 - 124.
    We study modal logics in the setting of varieties of modal algebras. Any variety of modal algebras generated by a finite algebra — such, a variety is called tabular — has only finitely many subvarieties, i.e. is of finite height. The converse does not hold in general. It is shown that the converse does hold in the lattice of varieties of K4-algebras. Hence the lower part of this lattice consists of tabular varieties only. We proceed to show that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  42.  33
    Restricted Priestley Dualities and Discriminator Varieties.B. A. Davey & A. Gair - 2017 - Studia Logica 105 (4):843-872.
    Anyone who has ever worked with a variety \ of algebras with a reduct in the variety of bounded distributive lattices will know a restricted Priestley duality when they meet one—but until now there has been no abstract definition. Here we provide one. After deriving some basic properties of a restricted Priestley dual category \ of such a variety, we give a characterisation, in terms of \, of finitely generated discriminator subvarieties of \. As an application of our characterisation, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43.  12
    A Note on 3×3-valued Łukasiewicz Algebras with Negation.Carlos Gallardo & Alicia Ziliani - 2021 - Bulletin of the Section of Logic 50 (3):289-298.
    In 2004, C. Sanza, with the purpose of legitimizing the study of \-valued Łukasiewicz algebras with negation -algebras) introduced \-valued Łukasiewicz algebras with negation. Despite the various results obtained about \-algebras, the structure of the free algebras for this variety has not been determined yet. She only obtained a bound for their cardinal number with a finite number of free generators. In this note we describe the structure of the free finitely generated \-algebras and we determine a formula to calculate (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44. Varieties Of Tense Algebras.Tomasz Kowalski - 1998 - Reports on Mathematical Logic:53-95.
    The paper has two parts preceded by quite comprehensive preliminaries.In the first part it is shown that a subvariety of the variety ${\cal T}$ of all tense algebras is discriminator if and only if it is semisimple. The variety ${\cal T}$ turns out to be the join of an increasing chain of varieties ${\cal D}_n$, which are discriminator varieties. The argument carries over to all finite type varieties of boolean algebras with operators satisfying some term conditions. In the case (...)
     
    Export citation  
     
    Bookmark   9 citations  
  45.  33
    Varieties of Three-Values Heyting Algebras with a Quantifier.Manuel Abad, J. P. Diaz Varela & L. A. Rueda - 2000 - Studia Logica 65 (2):181-198.
    This paper is devoted to the study of some subvarieties of the variety Q of Q-Heyting algebras, that is, Heyting algebras with a quantifier. In particular, a deeper investigation is carried out in the variety Q subscript 3 of three-valued Q-Heyting algebras to show that the structure of the lattice of subvarieties of Q is far more complicated that the lattice of subvarieties of Heyting algebras. We determine the simple and subdirectly irreducible algebras in Q subscript 3 and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  22
    Varieties of BL-Algebras II.P. Aglianò & F. Montagna - 2018 - Studia Logica 106 (4):721-737.
    In this paper we introduce a poset of subvarieties of BL-algebras, whose completion is the entire lattice of subvarietes; we exhibit also a description of this poset in terms of finite sequences of functions on the natural numbers.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  12
    Modal expansions of ririgs.AgustÍn L. Nagy & William J. Zuluaga Botero - 2025 - Logic Journal of the IGPL 33 (1):74-94.
    In this paper, we introduce the variety of $I$-modal ririgs. We characterize the congruence lattice of its members by means of $I$-filters, and we provide a description of $I$-filter generation. We also provide an axiomatic presentation for the variety generated by chains of the subvariety of contractive $I$-modal ririgs. Finally, we introduce a Hilbert-style calculus for a logic with $I$-modal ririgs as an equivalent algebraic semantics and we prove that such a logic has the parametrized local deduction-detachment theorem.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  26
    Epimorphism surjectivity in varieties of Heyting algebras.T. Moraschini & J. J. Wannenburg - 2020 - Annals of Pure and Applied Logic 171 (9):102824.
    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K . It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  18
    A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions.Juan Manuel Cornejo & Hanamantagouda P. Sankappanavar - 2022 - Bulletin of the Section of Logic 51 (4):555-645.
    The variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety \(\mathbb{DHMSH}\) from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  44
    Universal classes of simple relation algebras.Steven Givant - 1999 - Journal of Symbolic Logic 64 (2):575-589.
    Tarski [19] proved the important theorem that the class of representable relation algebras is equationally axiomatizable. One of the key steps in his proof is showing that the class of (isomorphs of) simple set relation algebras—that is, algebras of binary relations with a unit of the formU×Ufor some non-empty setU—is universal, i.e., is axiomatizable by a set of universal sentences. In the same paper Tarski observed that the class of (isomorphs of) relation algebras constructed from groups (so-calledgroup relation algebras) is (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 971