MARRO: multi-headed attention for rhetorical role labeling in legal documents

Artificial Intelligence and Law:1-30 (forthcoming)
  Copy   BIBTEX

Abstract

Identification of rhetorical roles like facts, arguments, and final judgments is central to understanding a legal case document and can lend power to other downstream tasks like legal case summarization and judgment prediction. However, there are several challenges to this task. Legal documents are often unstructured and contain a specialized vocabulary, making it hard for conventional transformer models to understand them. Additionally, these documents run into several pages, which makes it difficult for neural models to capture the entire context at once. Lastly, there is a dearth of annotated legal documents to train deep learning models. Previous state-of-the-art approaches for this task have focused on using neural models like BiLSTM-CRF or have explored different embedding techniques to achieve decent results. While such techniques have shown that better embedding can result in improved model performance, not many models have focused on utilizing attention for learning better embeddings in sentences of a document. Additionally, it has been recently shown that advanced techniques like multi-task learning can help the models learn better representations, thereby improving performance. In this paper, we combine these two aspects by proposing a novel family of multi-task learning-based models for rhetorical role labeling, named MARRO, that uses transformer-inspired multi-headed attention. Using label shift as an auxiliary task, we show that models from the MARRO family achieve state-of-the-art results on two labeled datasets for rhetorical role labeling, from the Indian and UK Supreme Courts.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 104,060

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2025-03-18

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?