Hörmander systems and harmonic morphisms

Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (2):379-394 (2003)
  Copy   BIBTEX

Abstract

Given a Hörmander system $X = \lbrace X_1, \cdots, X_m \rbrace $ on a domain $\Omega \subseteq {\bf R}^n$ we show that any subelliptic harmonic morphism $\phi $ from $\Omega $ into a $\nu $-dimensional riemannian manifold $N$ is a subelliptic harmonic map. Also $\phi $ is a submersion provided that $\nu \le m$ and $X$ has rank $m$. If $\Omega = {\bf H}_n$ and $X = \left\lbrace \frac{1}{2}\left, \frac{1}{2i}\left\right\rbrace $, where $L_{\overline{\alpha }} = \partial /\partial \overline{z}^\alpha - i z^\alpha \partial /\partial t$ is the Lewy operator, then a smooth map $\phi : \Omega \rightarrow N$ is a subelliptic harmonic morphism if and only if $\phi \circ \pi :, F_{\theta _0} ) \rightarrow N$ is a harmonic morphism, where $S^1 \rightarrow C \overset{\pi }{\rightarrow }{\rightarrow } {\bf H}_n$ is the canonical circle bundle and $F_{\theta _0}$ is the Fefferman metric of $$. For any $S^1$-invariant weak solution to the harmonic map equation on $, F_{\theta _0})$ the corresponding base map is shown to be a weak subelliptic harmonic map. We obtain a regularity result for weak harmonic morphisms from $, F_{\theta })$ into a riemannian manifold, where $F_{\theta }$ is the Fefferman metric associated to the system of vector fields $X_1 =\partial /\partial x_1, X_2 = \partial /\partial x_2 + x_1^k \; \partial /\partial x_3$ $\; $ on $\Omega = {\bf R}^3 \setminus \lbrace x_1 = 0 \rbrace $

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,270

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the space of morphisms into generic real algebraic varieties.Riccardo Ghiloni - 2006 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 5 (3):419-438.
On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains.Harish Seshadri & Kaushal Verma - 2006 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 5 (3):393-417.
$\Gamma$-convergence of concentration problems.Micol Amar & Adriana Garroni - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):151-179.
Persistence of Coron's solution in nearly critical problems.Monica Musso & Angela Pistoia - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (2):331-357.
On singular perturbation problems with Robin boundary condition.Henri Berestycki & Juncheng Wei - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):199-230.
Sharp estimates for bubbling solutions of a fourth order mean field equation.Chang-Shou Lin & Juncheng Wei - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (4):561-597.
On the existence of steady-state solutions to the Navier-Stokes system for large fluxes.Antonio Russo & Giulio Starita - 2008 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 7 (1):171-180.
Global calibrations for the non-homogeneous Mumford-Shah functional.Massimiliano Morini - 2002 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 1 (3):603-648.
Boundary regularity and compactness for overdetermined problems.Ivan Blank & Henrik Shahgholian - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (4):787-802.

Analytics

Added to PP
2015-04-27

Downloads
12 (#1,375,203)

6 months
2 (#1,689,990)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references