Sharp estimates for bubbling solutions of a fourth order mean field equation

Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (4):561-597 (2007)
  Copy   BIBTEX

Abstract

We consider a sequence of multi-bubble solutions $ u_k$ of the following fourth order equation $$\qquad \qquad \! \Delta ^2 u_k = \rho _k \frac{ h e^{u_k}}{ \int _\Omega h e^{u_k}} \ \ \mbox {in} \ \Omega, \ \ u_k=\Delta u_k=0 \ \ \mbox {on} \ \partial \Omega,\qquad \qquad \qquad $$ where $h$ is a $C^{2, \beta }$ positive function, $\Omega $ is a bounded and smooth domain in $\mathbb{R}^4$, and $\rho _k$ is a constant such that $ \rho _k\! \le \! C$. We show that, $\lim _{ k\rightarrow +\infty } \rho _k \!=\! 32 \sigma _3 m $ for some positive integer $m\! \ge \! 1$, where $\sigma _3$ is the area of the unit sphere in $\mathbb{R}^4$. Furthermore, we obtain the following sharp estimates for $\rho _k$: $$ \begin{aligned} \rho _k\! -\! 32 \sigma _3 m\! &=\! c_0 \sum _{j=1}^m\! \epsilon _{k, j}^2\! \left\! +\! \Delta R_4 \!+\! \frac{1}{32 \sigma _3} \Delta \log h \!\right)\hspace{-2.0pt}\\ &\quad + o\left \end{aligned} $$ where $c_0\!>\!0$, $\log \frac{64}{\epsilon _{k, j}^4 }\!=\!\!\! \max \limits _{x \in B_\delta }\! u_k \!-\!\log $ and $u_k \!\rightarrow \! 32 \sigma _3 \sum \limits _{j=1}^m G_4 $ in $ C^4_{\rm loc} $. This yields a bound of solutions as $\rho _k$ converges to $ 32 \sigma _3 m$ from below provided that $$ \sum _{j=1}^m \left + \Delta R_4 + \frac{1}{32 \sigma _3} \Delta \log h \right)>0.$$ The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $$

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,010

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Variations on determinacy and ℵω1.Ramez L. Sami - 2022 - Journal of Symbolic Logic 87 (2):721-731.
On singular perturbation problems with Robin boundary condition.Henri Berestycki & Juncheng Wei - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):199-230.
Sharp upper bounds for a singular perturbation problem related to micromagnetics.Arkady Poliakovsky - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (4):673-701.
The equation -Δu-λ=|∇ u|p+ c f: The Optimal Power.Boumediene Abdellaoui & Ireneo Peral - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (1):159-183.
Hörmander systems and harmonic morphisms.Elisabetta Barletta - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (2):379-394.
One-dimensional symmetry of periodic minimizers for a mean field equation.Chang-Shou Lin & Marcello Lucia - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (2):269-290.

Analytics

Added to PP
2015-04-27

Downloads
13 (#1,322,877)

6 months
4 (#1,249,230)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Lin Chang
Bedford Business College

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references