Abstract
Inspired by some logical considerations, the paper proposes a novel perspective on the use of two-players zero-sum games in abstract argumentation. The paper first introduces a second-order modal logic, within which all main Dung-style semantics are shown to be formalizable, and then studies the model checking game of this logic. The model checking game is then used to provide a systematic game theoretic proof procedure to test membership with respect to all those semantics formalizable in the logic. The paper discusses this idea in detail and illustrates it by providing a game for the so-called skeptical preferred and skeptical semi-stable semantics