Axes, boundaries and coordinates: The ABCs of fly leg development

Bioessays 17 (8):721-732 (1995)
  Copy   BIBTEX

Abstract

Recent studies of gene expression in the developing fruitfly leg support a model – Meinhardt's Boundary Model – which seems to contradict the prevailing paradigm for pattern formation in the imaginal discs of Drosophila – the Polar Coordinate Model. Reasoning from geometric first principles, this article examines the strengths and weaknesses of these hypotheses, plus some baffling phenomena that neither model can comfortably explain. The deeper question at issue is: how does the fly's genome encode the three‐dimensional anatomy of the adult? Does it demarcate territories and boundaries (as in a geopolitical map) and then use those boundaries and their points of intersection as a scaffolding on which to erect the anatomy (the Boundary Model)? Or does it assign cellular fates within a relatively seamless coordinate system (the Polar Coordinate Model)? The existence of hybrid Cartesian‐polar models shows that the alternatives may not be so clear‐cut: a single organ might utilize different systems that are spatially superimposed or temporally sequential.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,440

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Inclusive Worship and Group Liturgical Action.Joshua Cockayne - 2018 - Res Philosophica 95 (3):449-476.

Analytics

Added to PP
2013-11-23

Downloads
20 (#1,030,366)

6 months
6 (#835,286)

Historical graph of downloads
How can I increase my downloads?