Results for ' first-order Peano Arithmetic PA'

960 found
Order:
  1.  28
    Axiomatizations of Peano Arithmetic: A Truth-Theoretic View.Ali Enayat & Mateusz Łełyk - 2023 - Journal of Symbolic Logic 88 (4):1526-1555.
    We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  34
    Expanding the additive reduct of a model of Peano arithmetic.Masahiko Murakami & Akito Tsuboi - 2003 - Mathematical Logic Quarterly 49 (4):363-368.
    Let M be a model of first order Peano arithmetic and I an initial segment of M that is closed under multiplication. LetM0 be the {0, 1,+}-reduct ofM. We show that there is another model N of PA that is also an expansion of M0 such that a · Ma = a · Na if and only if a ∈ I for all a ∈ M.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  88
    Mathematical Incompleteness Results in First-Order Peano Arithmetic: A Revisionist View of the Early History.Saul A. Kripke - 2021 - History and Philosophy of Logic 43 (2):175-182.
    In the Handbook of Mathematical Logic, the Paris-Harrington variant of Ramsey's theorem is celebrated as the first result of a long ‘search’ for a purely mathematical incompleteness result in first-order Peano arithmetic. This paper questions the existence of any such search and the status of the Paris-Harrington result as the first mathematical incompleteness result. In fact, I argue that Gentzen gave the first such result, and that it was restated by Goodstein in a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4. First-order peano arithmetic.Peter Smith - unknown
    Theorem 1. If T is a sound formalized theory whose language contains the language of basic arithmetic, then there will be a true sentence GT of basic arithmetic such that T ￿ GT and ￿ ¬GT, so T must be negation incomplete.
     
    Export citation  
     
    Bookmark  
  5.  13
    Securing Arithmetical Determinacy.Sebastian G. W. Speitel - 2024 - Ergo: An Open Access Journal of Philosophy 11.
    The existence of non-standard models of first-order Peano-Arithmetic (PA) threatens to undermine the claim of the moderate mathematical realist that non-mysterious access to the natural number structure is possible on the basis of our best arithmetical theories. The move to logics stronger than FOL is denied to the moderate realist on the grounds that it merely shifts the indeterminacy “one level up” into the meta-theory by, illegitimately, assuming the determinacy of the notions needed to formulate such (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  59
    An application of graphical enumeration to PA.Andreas Weiermann - 2003 - Journal of Symbolic Logic 68 (1):5-16.
    For α less than ε0 let $N\alpha$ be the number of occurrences of ω in the Cantor normal form of α. Further let $\mid n \mid$ denote the binary length of a natural number n, let $\mid n\mid_h$ denote the h-times iterated binary length of n and let inv(n) be the least h such that $\mid n\mid_h \leq 2$ . We show that for any natural number h first order Peano arithmetic, PA, does not prove the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  7.  43
    On Models Constructed by Means of the Arithmetized Completeness Theorem.Richard Kaye & Henryk Kotlarski - 2000 - Mathematical Logic Quarterly 46 (4):505-516.
    In this paper we study the model theory of extensions of models of first-order Peano Arithmetic by means of the arithmetized completeness theorem applied to a definable complete extension of PA in the original model. This leads us to many interesting model theoretic properties equivalent to reflection principles and ω-consistency, and these properties together with the associated first-order schemes extending PA are studied.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  41
    Solovay's theorem cannot be simplified.Andrew Arana - 2001 - Annals of Pure and Applied Logic 112 (1):27-41.
    In this paper we consider three potential simplifications to a result of Solovay’s concerning the Turing degrees of nonstandard models of arbitrary completions of first-order Peano Arithmetic (PA). Solovay characterized the degrees of nonstandard models of completions T of PA, showing that they are the degrees of sets X such that there is an enumeration R ≤T X of an “appropriate” Scott set and there is a family of functions (tn)n∈ω, ∆0 n(X) uniformly in n, such (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  11
    Parameterfree Comprehension Does Not Imply Full Comprehension in Second Order Peano Arithmetic.Vladimir Kanovei & Vassily Lyubetsky - forthcoming - Studia Logica:1-16.
    The parameter-free part $$\textbf{PA}_2^*$$ of $$\textbf{PA}_2$$, second order Peano arithmetic, is considered. We make use of a product/iterated Sacks forcing to define an $$\omega $$ -model of $$\textbf{PA}_2^*+ \textbf{CA}(\Sigma ^1_2)$$, in which an example of the full Comprehension schema $$\textbf{CA}$$ fails. Using Cohen’s forcing, we also define an $$\omega $$ -model of $$\textbf{PA}_2^*$$, in which not every set has its complement, and hence the full $$\textbf{CA}$$ fails in a rather elementary way.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  74
    On the no-counterexample interpretation.Ulrich Kohlenbach - 1999 - Journal of Symbolic Logic 64 (4):1491-1511.
    In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  11. Parameterfree Comprehension Does Not Imply Full Comprehension in Second Order Peano Arithmetic.Vladimir Kanovei & Vassily Lyubetsky - 2025 - Studia Logica 113 (1):109-124.
    The parameter-free part \(\textbf{PA}_2^*\) of \(\textbf{PA}_2\), second order Peano arithmetic, is considered. We make use of a product/iterated Sacks forcing to define an \(\omega \) -model of \(\textbf{PA}_2^*+ \textbf{CA}(\Sigma ^1_2)\), in which an example of the full Comprehension schema \(\textbf{CA}\) fails. Using Cohen’s forcing, we also define an \(\omega \) -model of \(\textbf{PA}_2^*\), in which not every set has its complement, and hence the full \(\textbf{CA}\) fails in a rather elementary way.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  54
    Interpretations of the first-order theory of diagonalizable algebras in peano arithmetic.Franco Montagna - 1980 - Studia Logica 39 (4):347 - 354.
    For every sequence |p n } n of formulas of Peano ArithmeticPA with, every formulaA of the first-order theory diagonalizable algebras, we associate a formula 0 A, called the value ofA inPA with respect to the interpretation. We show that, ifA is true in every diagonalizable algebra, then, for every, 0 A is a theorem ofPA.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  13.  15
    Intrinsic reasoning about functional programs I: first order theories.Daniel Leivant - 2002 - Annals of Pure and Applied Logic 114 (1-3):117-153.
    We propose a rudimentary formal framework for reasoning about recursion equations over inductively generated data. Our formalism admits all equational programs , and yet singles out none. While being simple, this framework has numerous extensions and applications. Here we lay out the basic concepts and definitions; show that the deductive power of our formalism is similar to that of Peano's Arithmetic; prove a strong normalization theorem; and exhibit a mapping from natural deduction derivations to an applied λ -calculus, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  17
    Gentzen’s 1935 Consistency Proof and the Interpretation of its Implication.Yuta Takahashi - 2018 - Proceedings of the XXIII World Congress of Philosophy 55:73-78.
    In this paper, I will argue from a historical perspective that Gentzen’s 1935 consistency proof of 1st order Peano Arithmetic PA principally aimed to give a finitist interpretation of implication and this aspect of the 1935 proof emerged as the attempt to cope with the non-finiteness in BHK-interpretation of implication. My argument consists of two parts. First, I will explain that the fundamental idea of the 1935 proof is to show the soundness of PA on some (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  29
    Interpretability suprema in Peano Arithmetic.Paula Henk & Albert Visser - 2017 - Archive for Mathematical Logic 56 (5-6):555-584.
    This paper develops the philosophy and technology needed for adding a supremum operator to the interpretability logic ILM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ILM}$$\end{document} of Peano Arithmetic. It is well-known that any theories extending PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PA}$$\end{document} have a supremum in the interpretability ordering. While provable in PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PA}$$\end{document}, this fact is not reflected in the theorems of (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Model-theoretic properties characterizing Peano arithmetic.Richard Kaye - 1991 - Journal of Symbolic Logic 56 (3):949-963.
    Let= {0,1, +,·,<} be the usual first-order language of arithmetic. We show that Peano arithmetic is the least first-order-theory containingIΔ0+ exp such that every complete extensionTof it has a countable modelKsatisfying(i)Khas no proper elementary substructures, and(ii) wheneverL≻Kis a countable elementary extension there isandsuch that.Other model-theoretic conditions similar to (i) and (ii) are also discussed and shown to characterize Peano arithmetic.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  60
    Systems of explicit mathematics with non-constructive μ-operator. Part II.Solomon Feferman & Gerhard Jäger - 1996 - Annals of Pure and Applied Logic 79 (1):37-52.
    This paper is mainly concerned with proof-theoretic analysis of some second-order systems of explicit mathematics with a non-constructive minimum operator. By introducing axioms for variable types we extend our first-order theory BON to the elementary explicit type theory EET and add several forms of induction as well as axioms for μ. The principal results then state: EET plus set induction is proof-theoretically equivalent to Peano arithmetic PA <0).
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  18.  87
    Axiomatizations of arithmetic and the first-order/second-order divide.Catarina Dutilh Novaes - 2019 - Synthese 196 (7):2583-2597.
    It is often remarked that first-order Peano Arithmetic is non-categorical but deductively well-behaved, while second-order Peano Arithmetic is categorical but deductively ill-behaved. This suggests that, when it comes to axiomatizations of mathematical theories, expressive power and deductive power may be orthogonal, mutually exclusive desiderata. In this paper, I turn to Hintikka’s :69–90, 1989) distinction between descriptive and deductive approaches in the foundations of mathematics to discuss the implications of this observation for the (...)-order logic versus second-order logic divide. The descriptive approach is illustrated by Dedekind’s ‘discovery’ of the need for second-order concepts to ensure categoricity in his axiomatization of arithmetic; the deductive approach is illustrated by Frege’s Begriffsschrift project. I argue that, rather than suggesting that any use of logic in the foundations of mathematics is doomed to failure given the impossibility of combining the descriptive approach with the deductive approach, what this apparent predicament in fact indicates is that the first-order versus second-order divide may be too crude to investigate what an adequate axiomatization of arithmetic should look like. I also conclude that, insofar as there are different, equally legitimate projects one may engage in when working on the foundations of mathematics, there is no such thing as the One True Logic for this purpose; different logical systems may be adequate for different projects. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  32
    Transfinite induction within Peano arithmetic.Richard Sommer - 1995 - Annals of Pure and Applied Logic 76 (3):231-289.
    The relative strengths of first-order theories axiomatized by transfinite induction, for ordinals less-than 0, and formulas restricted in quantifier complexity, is determined. This is done, in part, by describing the provably recursive functions of such theories. Upper bounds for the provably recursive functions are obtained using model-theoretic techniques. A variety of additional results that come as an application of such techniques are mentioned.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  20.  22
    PA( aa ).James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):560-569.
    The theory PA(aa), which is Peano Arithmetic in the context of stationary logic, is shown to be consistent. Moreover, the first-order theory of the class of finitely determinate models of PA(aa) is characterized.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  21.  36
    The shortest definition of a number in Peano arithmetic.Dev K. Roy - 2003 - Mathematical Logic Quarterly 49 (1):83-86.
    The shortest definition of a number by a first order formula with one free variable, where the notion of a formula defining a number extends a notion used by Boolos in a proof of the Incompleteness Theorem, is shown to be non computable. This is followed by an examination of the complexity of sets associated with this function.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22. The Implicit Logic of Plato's Parmenides.Zbigniew Król - 2013 - Filozofia Nauki 21 (1).
    This paper is devoted to the reconstruction of the implicit logic of Plato’s Par-menides. The reconstructed logic, F, makes it possible to form a new semi-intuitionistic system of logic of predicates, FN. The axioms of Peano Arithmetic (PA) and an axiom of infinity follow from FN. Therefore, FN can be seen as a new attempt at the realization of Frege’s logicist program. Some very strong systems can be seen as other variants of FN, e.g. Leśniewski’s ontology. The hypothesis (...)
     
    Export citation  
     
    Bookmark   2 citations  
  23.  25
    Illusory models of peano arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Symbolic Logic 81 (3):1163-1175.
    By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a modelMof PA. We say a modelMof PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane ifM⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane modelNof PA. We firstly show thatMis heterodox if and only if it is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  44
    Undefinability vs. Definability of Satisfaction and Truth.Roman Murawski - 1999 - Vienna Circle Institute Yearbook 6:203-215.
    Among the main theorems obtained in mathematical logic in this century are the so called limitation theorems, i.e., the Löwenheim-Skolem theorem on the cardinality of models of first-order theories, Gödel’s incompleteness theorems and Tarski’s theorem on the undefinability of truth. Problems connected with the latter are the subject of this paper. In Section 1 we shall consider Tarski’s theorem. In particular the original formulation of it as well as some specifications will be provided. Next various meanings of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  33
    Subrecursive degrees and fragments of Peano Arithmetic.Lars Kristiansen - 2001 - Archive for Mathematical Logic 40 (5):365-397.
    Let T 0?T 1 denote that each computable function, which is provable total in the first order theory T 0, is also provable total in the first order theory T 1. Te relation ? induces a degree structure on the sound finite Π2 extensions of EA (Elementary Arithmetic). This paper is devoted to the study of this structure. However we do not study the structure directly. Rather we define an isomorphic subrecursive degree structure <≤,?>, and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26. RETRACTED ARTICLE: The Twin Primes Conjecture is True in the Standard Model of Peano Arithmetic: Applications of Rasiowa–Sikorski Lemma in Arithmetic (I).Janusz Czelakowski - 2023 - Studia Logica 111 (2):357-358.
    The paper is concerned with the old conjecture that there are infinitely many twin primes. In the paper we show that this conjecture is true, that is, it is true in the standard model of arithmetic. The proof is based on Rasiowa–Sikorski Lemma. The key role are played by the derived notion of a Rasiowa–Sikorski set and the method of forcing adjusted to arbitrary firstorder languages. This approach was developed in the papers Czelakowski [ 4, 5 ]. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  42
    Phase transitions of iterated Higman-style well-partial-orderings.Lev Gordeev & Andreas Weiermann - 2012 - Archive for Mathematical Logic 51 (1-2):127-161.
    We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}$$\end{document} in question, d > 1, we fix a natural extension of Peano Arithmetic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T \supseteq \sf{PA}}$$\end{document}, that proves the corresponding second-order sentence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  61
    Real closed fields and models of Peano arithmetic.P. D'Aquino, J. F. Knight & S. Starchenko - 2010 - Journal of Symbolic Logic 75 (1):1-11.
    Shepherdson [14] showed that for a discrete ordered ring I, I is a model of IOpen iff I is an integer part of a real closed ordered field. In this paper, we consider integer parts satisfying PA. We show that if a real closed ordered field R has an integer part I that is a nonstandard model of PA (or even IΣ₄), then R must be recursively saturated. In particular, the real closure of I, RC (I), is recursively saturated. We (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  29.  43
    Intuitionistic validity in T-normal Kripke structures.Samuel R. Buss - 1993 - Annals of Pure and Applied Logic 59 (3):159-173.
    Let T be a first-order theory. A T-normal Kripke structure is one in which every world is a classical model of T. This paper gives a characterization of the intuitionistic theory T of sentences intuitionistically valid in all T-normal Kripke structures and proves the corresponding soundness and completeness theorems. For Peano arithmetic , the theory PA is a proper subtheory of Heyting arithmetic , so HA is complete but not sound for PA-normal Kripke structures.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  30.  26
    Arithmetic Formulated Relevantly.Robert Meyer - 2021 - Australasian Journal of Logic 18 (5):154-288.
    The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that it is trivial that relevant arithmetic is absolutely consistent, but classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under, I shall show in particular that 0 = 1 is a non-theorem of relevant (...); this, of course, is exactly the formula whose unprovability was sought in the Hilbert program for proving arithmetic consistent. Under, I shall exhibit the requisite translation, drawing some Goedelian conclusions therefrom. Left open, however, is the critical problem whether Ackermann’s rule γ is admissible for theories of relevant arithmetic. The particular system of relevant Peano arithmetic featured in this paper shall be called R♯. Its logical base shall be the system R of relevant implication, taken in its first-order form RQ. Among other Peano arithmetics we shall consider here in particular the systems C♯, J♯, and RM3♯; these are based respectively on the classical logic C, the intuitionistic logic J, and the Sobocinski-Dunn semi-relevant logic RM3. And another feature of the paper will be the presentation of a system of natural deduction for R♯, along lines valid for first-order relevant theories in general. This formulation of R♯ makes it possible to construct relevantly valid arithmetical deductions in an easy and natural way; it is based on, but is in some respects more convenient than, the natural deduction formulations for relevant logics developed by Anderson and Belnap in Entailment. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  31. Arithmetical truth and hidden higher-order concepts.Daniel Isaacson - 1987 - In Logic Colloquium '85: Proceedings of the Colloquium held in Orsay, France July 1985 (Studies in Logic and the Foundations of Mathematics, Vol. 122.). Amsterdam, New York, Oxford, Tokyo: North-Holland. pp. 147-169.
    The incompleteness of formal systems for arithmetic has been a recognized fact of mathematics. The term “incompleteness” suggests that the formal system in question fails to offer a deduction which it ought to. This chapter focuses on the status of a formal system, Peano Arithmetic, and explores a viewpoint on which Peano Arithmetic occupies an intrinsic, conceptually well-defined region of arithmetical truth. The idea is that it consists of those truths which can be perceived directly (...)
     
    Export citation  
     
    Bookmark   4 citations  
  32.  42
    Fragments of Arithmetic and true sentences.Andrés Cordón-Franco, Alejandro Fernández-Margarit & F. Félix Lara-Martín - 2005 - Mathematical Logic Quarterly 51 (3):313-328.
    By a theorem of R. Kaye, J. Paris and C. Dimitracopoulos, the class of the Πn+1-sentences true in the standard model is the only consistent Πn+1-theory which extends the scheme of induction for parameter free Πn+1-formulas. Motivated by this result, we present a systematic study of extensions of bounded quantifier complexity of fragments of first-order Peano Arithmetic. Here, we improve that result and show that this property describes a general phenomenon valid for parameter free schemes. As (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  33.  31
    An Escape From Vardanyan’s Theorem.Ana de Almeida Borges & Joost J. Joosten - 2023 - Journal of Symbolic Logic 88 (4):1613-1638.
    Vardanyan’s Theorems [36, 37] state that $\mathsf {QPL}(\mathsf {PA})$ —the quantified provability logic of Peano Arithmetic—is $\Pi ^0_2$ complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  55
    On expandability of models of peano arithmetic to models of the alternative set theory.Athanassios Tzouvaras - 1992 - Journal of Symbolic Logic 57 (2):452-460.
    We give a sufficient condition for a countable model M of PA to be expandable to an ω-model of AST with absolute Ω-orderings. The condition is in terms of saturation schemes or, equivalently, in terms of the ability of the model to code sequences which have some kind of definition in (M, ω). We also show that a weaker scheme of saturation leads to the existence of wellorderings of the model with nice properties. Finally, we answer affirmatively the question of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  35.  47
    Arithmetical set theory.Paul Strauss - 1991 - Studia Logica 50 (2):343 - 350.
    It is well known that number theory can be interpreted in the usual set theories, e.g. ZF, NF and their extensions. The problem I posed for myself was to see if, conversely, a reasonably strong set theory could be interpreted in number theory. The reason I am interested in this problem is, simply, that number theory is more basic or more concrete than set theory, and hence a more concrete foundation for mathematics. A partial solution to the problem was accomplished (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  36. There is No Paradox of Logical Validity.Roy T. Cook - 2014 - Logica Universalis 8 (3-4):447-467.
    A number of authors have argued that Peano Arithmetic supplemented with a logical validity predicate is inconsistent in much the same manner as is PA supplemented with an unrestricted truth predicate. In this paper I show that, on the contrary, there is no genuine paradox of logical validity—a completely general logical validity predicate can be coherently added to PA, and the resulting system is consistent. In addition, this observation lead to a number of novel, and important, insights into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  37.  18
    The Structural Complexity of Models of Arithmetic.Antonio Montalbán & Dino Rossegger - 2024 - Journal of Symbolic Logic 89 (4):1703-1719.
    We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that no non-standard model can have Scott rank less than $\omega $ and that non-standard models of true arithmetic must have Scott rank greater than $\omega $. Other than that there are no restrictions. By giving a reduction via $\Delta ^{\mathrm {in}}_{1}$ bi-interpretability from the class of linear orderings to the canonical structural $\omega $ -jump of models of an arbitrary completion T of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  45
    On the structure of kripke models of heyting arithmetic.Zoran Marković - 1993 - Mathematical Logic Quarterly 39 (1):531-538.
    Since in Heyting Arithmetic all atomic formulas are decidable, a Kripke model for HA may be regarded classically as a collection of classical structures for the language of arithmetic, partially ordered by the submodel relation. The obvious question is then: are these classical structures models of Peano Arithmetic ? And dually: if a collection of models of PA, partially ordered by the submodel relation, is regarded as a Kripke model, is it a model of HA? Some (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  39. On first-order theories with provability operator.Sergei Artëmov & Franco Montagna - 1994 - Journal of Symbolic Logic 59 (4):1139-1153.
    In this paper the modal operator "x is provable in Peano Arithmetic" is incorporated into first-order theories. A provability extension of a theory is defined. Presburger Arithmetic of addition, Skolem Arithmetic of multiplication, and some first order theories of partial consistency statements are shown to remain decidable after natural provability extensions. It is also shown that natural provability extensions of a decidable theory may be undecidable.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  15
    The Consistency of Arithmetic.Robert Meyer - 2021 - Australasian Journal of Logic 18 (5):289-379.
    This paper offers an elementary proof that formal arithmetic is consistent. The system that will be proved consistent is a first-order theory R♯, based as usual on the Peano postulates and the recursion equations for + and ×. However, the reasoning will apply to any axiomatizable extension of R♯ got by adding classical arithmetical truths. Moreover, it will continue to apply through a large range of variation of the un- derlying logic of R♯, while on a (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. (1 other version)Objects are (not) ...Friedrich Wilhelm Grafe - 2024 - Archive.Org.
    My goal in this paper is, to tentatively sketch and try defend some observations regarding the ontological dignity of object references, as they may be used from within in a formalized language. -/- Hence I try to explore, what properties objects are presupposed to have, in order to enter the universe of discourse of an interpreted formalized language. -/- First I review Frege′s analysis of the logical structure of truth value definite sentences of scientific colloquial language, to draw (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  42.  18
    Arithmetic Sinn and Effectiveness.Stewart Shapiro - 1984 - Dialectica 38 (1):3-16.
    SummaryAccording to Dummett's understanding of Frege, the sense of a denoting expression is a procedure for determining its denotation. The purpose of this article is to pursue this suggestion and develop a semi‐formal interpretation of Fregean sense for the special case of a firstorder language of arithmetic. In particular, we define the sense of each arithmetic expression to be a hypothetical process to determine the denoted number or truth value. The sense‐process is “hypothetical” in that the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  29
    Indiscernibles and satisfaction classes in arithmetic.Ali Enayat - 2024 - Archive for Mathematical Logic 63 (5):655-677.
    We investigate the theory Peano Arithmetic with Indiscernibles ( \(\textrm{PAI}\) ). Models of \(\textrm{PAI}\) are of the form \(({\mathcal {M}},I)\), where \({\mathcal {M}}\) is a model of \(\textrm{PA}\), _I_ is an unbounded set of order indiscernibles over \({\mathcal {M}}\), and \(({\mathcal {M}},I)\) satisfies the extended induction scheme for formulae mentioning _I_. Our main results are Theorems A and B following. _Theorem A._ _Let_ \({\mathcal {M}}\) _be a nonstandard model of_ \(\textrm{PA}\) _ of any cardinality_. \(\mathcal {M }\) (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44. Regularity in models of arithmetic.George Mills & Jeff Paris - 1984 - Journal of Symbolic Logic 49 (1):272-280.
    This paper investigates the quantifier "there exist unboundedly many" in the context of first-order arithmetic. An alternative axiomatization is found for Peano arithmetic based on an axiom schema of regularity: The union of boundedly many bounded sets is bounded. We also obtain combinatorial equivalents of certain second-order theories associated with cuts in nonstandard models of arithmetic.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  45. On interpretations of bounded arithmetic and bounded set theory.Richard Pettigrew - 2009 - Notre Dame Journal of Formal Logic 50 (2):141-152.
    In 'On interpretations of arithmetic and set theory', Kaye and Wong proved the following result, which they considered to belong to the folklore of mathematical logic.

    THEOREM 1 The first-order theories of Peano arithmetic and Zermelo-Fraenkel set theory with the axiom of infinity negated are bi-interpretable.

    In this note, I describe a theory of sets that is bi-interpretable with the theory of bounded arithmetic IDelta0 + exp. Because of the weakness of this theory of sets, I (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Two weak arithmetics.Peter Smith - unknown
    Our last big theorem – Theorem 6 – tells us that if a theory meets certain conditions, then it must be negation incomplete. And we made some initial arm-waving remarks to the effect that it seems plausible that we should want theories which meet those conditions. Later, we announced that there actually is a consistent weak arithmetic with a first-order logic which meets the conditions (in which case, stronger arithmetics will also meet the conditions); but we didn’t (...)
     
    Export citation  
     
    Bookmark  
  47.  59
    Alethic Reference.Lavinia Picollo - 2020 - Journal of Philosophical Logic 49 (3):417-438.
    I put forward precise and appealing notions of reference, self-reference, and well-foundedness for sentences of the language of first-order Peano arithmetic extended with a truth predicate. These notions are intended to play a central role in the study of the reference patterns that underlie expressions leading to semantic paradox and, thus, in the construction of philosophically well-motivated semantic theories of truth.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  48. Categorical Quantification.Constantin C. Brîncuş - 2024 - Bulletin of Symbolic Logic 30 (2):pp. 227-252.
    Due to Gӧdel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments –Warren (2020), Murzi and Topey (2021)– for the idea that the natural deduction (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  32
    Subsystems of true arithmetic and hierarchies of functions.Z. Ratajczyk - 1993 - Annals of Pure and Applied Logic 64 (2):95-152.
    Ratajczyk, Z., Subsystems of true arithmetic and hierarchies of functions, Annals of Pure and Applied Logic 64 95–152. The combinatorial method coming from the study of combinatorial sentences independent of PA is developed. Basing on this method we present the detailed analysis of provably recursive functions associated with higher levels of transfinite induction, I, and analyze combinatorial sentences independent of I. Our treatment of combinatorial sentences differs from the one given by McAloon [18] and gives more natural sentences. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  50. An Introduction to Proof Theory: Normalization, Cut-Elimination, and Consistency Proofs.Paolo Mancosu, Sergio Galvan & Richard Zach - 2021 - Oxford: Oxford University Press. Edited by Sergio Galvan & Richard Zach.
    An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic, natural deduction and the normalization theorems, the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 960