Results for ' second incompleteness theorem'

972 found
Order:
  1.  95
    The Second Incompleteness Theorem and Bounded Interpretations.Albert Visser - 2012 - Studia Logica 100 (1-2):399-418.
    In this paper we formulate a version of Second Incompleteness Theorem. The idea is that a sequential sentence has ‘consistency power’ over a theory if it enables us to construct a bounded interpretation of that theory. An interpretation of V in U is bounded if, for some n , all translations of V -sentences are U -provably equivalent to sentences of complexity less than n . We call a sequential sentence with consistency power over T a pro-consistency (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  80
    Gödel’s Second Incompleteness Theorem: How It is Derived and What It Delivers.Saeed Salehi - 2020 - Bulletin of Symbolic Logic 26 (3-4):241-256.
    The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950), Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with each other, especially from the viewpoint of the second incompleteness theorem. It is shown that Gödel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second incompleteness (...), and Boolos’ theorem is derived from the second incompleteness theorem in the standard way. It is also shown that none of Rosser’s, Kleene’s second or Boolos’ theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness theorem neither delivers nor is derived from the second incompleteness theorem. We compare (the strength of) these six proofs with one another. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  82
    Another look at the second incompleteness theorem.Albert Visser - 2020 - Review of Symbolic Logic 13 (2):269-295.
    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the set of axioms varies. We extend the Feferman framework in one important point: we allow the interpretation of number theory to vary.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  4.  58
    Kolmogorov complexity and the second incompleteness theorem.Makoto Kikuchi - 1997 - Archive for Mathematical Logic 36 (6):437-443.
    We shall prove the second incompleteness theorem via Kolmogorov complexity.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  5.  33
    A generalization of the Second Incompleteness Theorem and some exceptions to it.Dan E. Willard - 2006 - Annals of Pure and Applied Logic 141 (3):472-496.
    This paper will introduce the notion of a naming convention and use this paradigm to both develop a new version of the Second Incompleteness Theorem and to describe when an axiom system can partially evade the Second Incompleteness Theorem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  6. Gödel’s Second Incompleteness Theorem.Bernd Buldt - unknown
    Slides for the third tutorial on Gödel's incompleteness theorems, held at UniLog 5 Summer School, Istanbul, June 24, 2015.
     
    Export citation  
     
    Bookmark  
  7. Gödel's Second incompleteness theorem for Q.A. Bezboruah & J. C. Shepherdson - 1976 - Journal of Symbolic Logic 41 (2):503-512.
  8. Gödel's second incompleteness theorem explained in words of one syllable.George Boolos - 1994 - Mind 103 (409):1-3.
  9.  29
    Gödel’s second incompleteness theorem for Σn-definable theories.Conden Chao & Payam Seraji - 2018 - Logic Journal of the IGPL 26 (2):255-257.
  10.  69
    How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic Q.Dan E. Willard - 2002 - Journal of Symbolic Logic 67 (1):465-496.
    Let us recall that Raphael Robinson's Arithmetic Q is an axiom system that differs from Peano Arithmetic essentially by containing no Induction axioms [13], [18]. We will generalize the semantic-tableaux version of the Second Incompleteness Theorem almost to the level of System Q. We will prove that there exists a single rather long Π 1 sentence, valid in the standard model of the Natural Numbers and denoted as V, such that if α is any finite consistent extension (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  11.  49
    What does gödel's second incompleteness theorem show?A. W. Moore - 1988 - Noûs 22 (4):573-584.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12.  92
    An Incompleteness Theorem Via Ordinal Analysis.James Walsh - 2024 - Journal of Symbolic Logic 89 (1):80-96.
    We present an analogue of Gödel’s second incompleteness theorem for systems of second-order arithmetic. Whereas Gödel showed that sufficiently strong theories that are $\Pi ^0_1$ -sound and $\Sigma ^0_1$ -definable do not prove their own $\Pi ^0_1$ -soundness, we prove that sufficiently strong theories that are $\Pi ^1_1$ -sound and $\Sigma ^1_1$ -definable do not prove their own $\Pi ^1_1$ -soundness. Our proof does not involve the construction of a self-referential sentence but rather relies on ordinal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Existentially closed structures and gödel's second incompleteness theorem.Zofia Adamowicz & Teresa Bigorajska - 2001 - Journal of Symbolic Logic 66 (1):349-356.
    We prove that any 1-closed (see def 1.1) model of the Π 2 consequences of PA satisfies ¬Cons PA which gives a proof of the second Godel incompleteness theorem without the use of the Godel diagonal lemma. We prove a few other theorems by the same method.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  14.  15
    (1 other version)Gödel's Second Incompleteness Theorem for General Recursive Arithmetic.William Ryan - 1978 - Mathematical Logic Quarterly 24 (25‐30):457-459.
  15. Fromal statements of Godel's second incompleteness theorem.Harvey Friedman - manuscript
    Informal statements of Gödel's Second Incompleteness Theorem, referred to here as Informal Second Incompleteness, are simple and dramatic. However, current versions of Formal Second Incompleteness are complicated and awkward. We present new versions of Formal Second Incompleteness that are simple, and informally imply Informal Second Incompleteness. These results rest on the isolation of simple formal properties shared by consistency statements. Here we do not address any issues concerning proofs of (...)
     
    Export citation  
     
    Bookmark  
  16.  44
    A general principle for purely model-theoretical proofs of Gödel’s second incompleteness theorem.Dirk Ullrich - 1998 - Logic and Logical Philosophy 6:173.
    By generalizing Kreisel’s proof of the Second Incompleteness Theorem of G¨odel I extract a general principle which can also be used for otherpurely model-theoretical proofs of that theorem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17.  33
    On a Relationship between Gödel's Second Incompleteness Theorem and Hilbert's Program.Ryota Akiyoshi - 2009 - Annals of the Japan Association for Philosophy of Science 17:13-29.
  18.  77
    (1 other version)Redundancies in the Hilbert-Bernays derivability conditions for gödel's second incompleteness theorem.R. G. Jeroslow - 1973 - Journal of Symbolic Logic 38 (3):359-367.
  19.  38
    Generalizations of gödel’s incompleteness theorems for ∑ N-definable theories of arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2017 - Review of Symbolic Logic 10 (4):603-616.
    It is well known that Gödel’s incompleteness theorems hold for ∑1-definable theories containing Peano arithmetic. We generalize Gödel’s incompleteness theorems for arithmetically definable theories. First, we prove that every ∑n+1-definable ∑n-sound theory is incomplete. Secondly, we generalize and improve Jeroslow and Hájek’s results. That is, we prove that every consistent theory having ∏n+1set of theorems has a true but unprovable ∏nsentence. Lastly, we prove that no ∑n+1-definable ∑n-sound theory can prove its own ∑n-soundness. These three results are generalizations (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20. An incompleteness theorem for β n -models.Carl Mummert & Stephen G. Simpson - 2004 - Journal of Symbolic Logic 69 (2):612-616.
    Let n be a positive integer. By a $\beta_{n}-model$ we mean an $\omega-model$ which is elementary with respect to $\sigma_{n}^{1}$ formulas. We prove the following $\beta_{n}-model$ version of $G\ddot{o}del's$ Second Incompleteness Theorem. For any recursively axiomatized theory S in the language of second order arithmetic, if there exists a $\beta_{n}-model$ of S, then there exists a $\beta_{n}-model$ of S + "there is no countable $\beta_{n}-model$ of S". We also prove a $\beta_{n}-model$ version of $L\ddot{o}b's$ Theorem. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  21. Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness (...), such a formal system cannot prove that the system itself is consistent (assuming it is indeed consistent). These results have had a great impact on the philosophy of mathematics and logic. There have been attempts to apply the results also in other areas of philosophy such as the philosophy of mind, but these attempted applications are more controversial. The present entry surveys the two incompleteness theorems and various issues surrounding them. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   23 citations  
  22.  81
    Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  23. The Importance of Gödel's Second Incompleteness Theorem for the Foundations of Mathematics.Michael Detlefsen - 1976 - Dissertation, The Johns Hopkins University
     
    Export citation  
     
    Bookmark  
  24.  24
    Jeroslow R. G.. Redundancies in the Hilbert–Bernays derivability conditions for Gödel's second incompleteness theorem.C. F. Kent - 1983 - Journal of Symbolic Logic 48 (3):875-876.
  25.  87
    A Note on Boolos' Proof of the Incompleteness Theorem.Makoto Kikuchi - 1994 - Mathematical Logic Quarterly 40 (4):528-532.
    We give a proof of Gödel's first incompleteness theorem based on Berry's paradox, and from it we also derive the second incompleteness theorem model-theoretically.
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  26. Gödel's incompleteness theorems, free will and mathematical thought.Solomon Feferman - 2011 - In Richard Swinburne, Free Will and Modern Science. New York: OUP/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  27. Self-verifying axiom systems, the incompleteness theorem and related reflection principles.Dan Willard - 2001 - Journal of Symbolic Logic 66 (2):536-596.
    We will study several weak axiom systems that use the Subtraction and Division primitives (rather than Addition and Multiplication) to formally encode the theorems of Arithmetic. Provided such axiom systems do not recognize Multiplication as a total function, we will show that it is feasible for them to verify their Semantic Tableaux, Herbrand, and Cut-Free consistencies. If our axiom systems additionally do not recognize Addition as a total function, they will be capable of recognizing the consistency of their Hilbert-style deductive (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  28. Gödel’s First Incompleteness Theorem.Bernd Buldt - unknown
    Slides for the second tutorial on Gödel's incompleteness theorems, held at UniLog 5 Summer School, Istanbul, June 24, 2015.
     
    Export citation  
     
    Bookmark  
  29. On an alleged refutation of Hilbert's program using gödel's first incompleteness theorem.Michael Detlefsen - 1990 - Journal of Philosophical Logic 19 (4):343 - 377.
    It is argued that an instrumentalist notion of proof such as that represented in Hilbert's viewpoint is not obligated to satisfy the conservation condition that is generally regarded as a constraint on Hilbert's Program. A more reasonable soundness condition is then considered and shown not to be counter-exemplified by Godel's First Theorem. Finally, attention is given to the question of what a theory is; whether it should be seen as a "list" or corpus of beliefs, or as a method (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  30. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Contemporary perspectives on Hilbert's second problem and the gödel incompleteness theorems.Harvey Friedman - manuscript
    It is not yet clear just what the most illuminating ways of rigorously stating the Incompleteness Theorems are. This is particularly true of the Second. Also I believe that there are more illuminating proofs of the Second that have yet to be uncovered.
     
    Export citation  
     
    Bookmark  
  32. Edgar Morin's paradigm of complexity and gödel's incompleteness theorem.Yi-Zhuang Chen - 2004 - World Futures 60 (5 & 6):421 – 431.
    This article shows that in two respects, Gödel's incompleteness theorem strongly supports the arguments of Edgar Morin's complexity paradigm. First, from the viewpoint of the content of Gödel's theorem, the latter justifies the basic view of complexity paradigm according to which knowledge is a dynamic, unfinished process, and develops by way of self-criticism and self-transcendence. Second, from the viewpoint of the proof procedure of Gödel's theorem, the latter confirms the complexity paradigm's circular line of inference (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  46
    Heterologicality and Incompleteness.Cezary Cieśliński - 2002 - Mathematical Logic Quarterly 48 (1):105-110.
    We present a semantic proof of Gödel's second incompleteness theorem, employing Grelling's antinomy of heterological expressions. For a theory T containing ZF, we define the sentence HETT which says intuitively that the predicate “heterological” is itself heterological. We show that this sentence doesn't follow from T and is equivalent to the consistency of T. Finally we show how to construct a similar incompleteness proof for Peano Arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Back to basics: Revisiting the incompleteness theorems.Peter Smith - unknown
    Preface 1 The First Theorem revisited 1.1 Notational preliminaries 1.2 Definitional preliminaries 1.3 A general version of G¨ odel’s First Theorem 1.4 Giving the First Theorem bite 1.5 Generic G¨ odel sentences and arithmetic truth 1.6 Canonical and standard G¨ odel sentences 2 The Second Theorem revisited 2.1 Definitional preliminaries 2.2 Towards G¨ odel’s Second Theorem 2.3 A general version of G¨ odel’s Second Theorem 2.4 Giving the Second Theorem (...)
     
    Export citation  
     
    Bookmark  
  35. On interpreting Gödel's second theorem.Michael Detlefsen - 1979 - Journal of Philosophical Logic 8 (1):297 - 313.
    In this paper I have considered various attempts to attribute significance to Gödel's second incompleteness theorem (G2 for short). Two of these attempts (Beth-Cohen and the position maintaining that G2 shows the failure of Hilbert's Program), I have argued, are false. Two others (an argument suggested by Beth, Cohen and ??? and Resnik's Interpretation), I argue, are groundless.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  36. What is the Link between Aristotle’s Philosophy of Mind, the Iterative Conception of Set, Gödel’s Incompleteness Theorems and God? About the Pleasure and the Difficulties of Interpreting Kurt Gödel’s Philosophical Remarks.Eva-Maria Engelen - 2016 - In Gabriella Crocco & Eva-Maria Engelen, Kurt Gödel Philosopher-Scientist. Marseille: Presses universitaires de Provence.
    It is shown in this article in how far one has to have a clear picture of Gödel’s philosophy and scientific thinking at hand (and also the philosophical positions of other philosophers in the history of Western Philosophy) in order to interpret one single Philosophical Remark by Gödel. As a single remark by Gödel (very often) mirrors his whole philosophical thinking, Gödel’s Philosophical Remarks can be seen as a philosophical monadology. This is so for two reasons mainly: Firstly, because it (...)
     
    Export citation  
     
    Bookmark   1 citation  
  37.  37
    Notes on the fate of logicism from principia mathematica to gödel's incompletability theorem.I. Grattan-Guinness - 1984 - History and Philosophy of Logic 5 (1):67-78.
    An outline is given of the development of logicism from the publication of the first edition of Whitehead and Russell's Principia mathematica (1910-1913) through the contributions of Wittgenstein, Ramsey and Chwistek to Russell's own modifications made for the second edition of the work (1925) and the adoption of many of its logical techniques by the Vienna Circle. A tendency towards extensionalism is emphasised.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38. What does Gödel's second theorem say?Michael Detlefsen - 2001 - Philosophia Mathematica 9 (1):37-71.
    We consider a seemingly popular justification (we call it the Re-flexivity Defense) for the third derivability condition of the Hilbert-Bernays-Löb generalization of Godel's Second Incompleteness Theorem (G2). We argue that (i) in certain settings (rouglily, those where the representing theory of an arithmetization is allowed to be a proper subtheory of the represented theory), use of the Reflexivity Defense to justify the tliird condition induces a fourth condition, and that (ii) the justification of this fourth condition faces (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  39.  60
    Consistency, optimality, and incompleteness.Yijia Chen, Jörg Flum & Moritz Müller - 2013 - Annals of Pure and Applied Logic 164 (12):1224-1235.
    Assume that the problem P0 is not solvable in polynomial time. Let T be a first-order theory containing a sufficiently rich part of true arithmetic. We characterize T∪{ConT} as the minimal extension of T proving for some algorithm that it decides P0 as fast as any algorithm B with the property that T proves that B decides P0. Here, ConT claims the consistency of T. As a byproduct, we obtain a version of Gödelʼs Second Incompleteness Theorem. Moreover, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40.  13
    Incompleteness and jump hierarchies.James Walsh & Patrick Lutz - 2020 - Proceedings of the American Mathematical Society 148 (11):4997--5006.
    This paper is an investigation of the relationship between G\"odel's second incompleteness theorem and the well-foundedness of jump hierarchies. It follows from a classic theorem of Spector's that the relation $\{(A,B) \in \mathbb{R}^2 : \mathcal{O}^A \leq_H B\}$ is well-founded. We provide an alternative proof of this fact that uses G\"odel's second incompleteness theorem instead of the theory of admissible ordinals. We then derive a semantic version of the second incompleteness theorem, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  68
    Incompleteness and the Halting Problem.Cristian S. Calude - 2021 - Studia Logica 109 (5):1159-1169.
    We present an abstract framework in which we give simple proofs for Gödel’s First and Second Incompleteness Theorems and obtain, as consequences, Davis’, Chaitin’s and Kritchman-Raz’s Theorems.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  22
    Incompleteness in a general setting.John L. Bell - 2007 - Bulletin of Symbolic Logic 13 (1):21-30.
    Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy lies in the details of setting up and checking the properties of a coding system representing the syntax of an object language within that same language. These details are seldom illuminating and tend to obscure the core of the argument. For this reason a number of efforts have been made to present the essentials of the proofs of Gödel's theorems without getting mired in syntactic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  92
    Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  44. Incompleteness in a general setting (vol 13, pg 21, 2007).John L. Bell - 2008 - Bulletin of Symbolic Logic 14 (1):21 - 30.
    Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy lies in the details of setting up and checking the properties of a coding system representing the syntax of an object language (typically, that of arithmetic) within that same language. These details are seldom illuminating and tend to obscure the core of the argument. For this reason a number of efforts have been made to present the essentials of the proofs of Gödel’s theorems without (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  45.  42
    Inconsistency and Incompleteness, Revisited.Stewart Shapiro - 2019 - In Can Başkent & Thomas Macaulay Ferguson, Graham Priest on Dialetheism and Paraconsistency. Cham, Switzerland: Springer Verlag. pp. 469-479.
    Graham Priest introduces an informal but presumably rigorous and sharp ‘provability predicate’. He argues that this predicate yields inconsistencies, along the lines of the paradox of the Knower. One long-standing claim of Priest’s is that a dialetheist can have a complete, decidable, and yet sufficiently rich mathematical theory. After all, the incompleteness theorem is, in effect, that for any recursive theory A, if A is consistent, then A is incomplete. If the antecedent fails, as it might for a (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  64
    Socrates did it before Gödel.Josef Wolfgang Degen - 2011 - Logic and Logical Philosophy 20 (3):205-214.
    We translate Socrates’ famous saying I know that I know nothing into the arithmetical sentence I prove that I prove nothing. Then it is easy to show that this translated saying is formally undecidable in formal arithmetic, using Gödel’s Second Incompleteness Theorem. We investigate some variations of this Socrates-Gödel sentence. In an appendix we sketch a ramified epistemic logic with propositional quantifiers in order to analyze the Socrates-Gödel sentence in a more logical way, separated from the arithmetical (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  47. Screening-Off and Causal Incompleteness: A No-Go Theorem.Elliott Sober & Mike Steel - 2013 - British Journal for the Philosophy of Science 64 (3):513-550.
    We begin by considering two principles, each having the form causal completeness ergo screening-off. The first concerns a common cause of two or more effects; the second describes an intermediate link in a causal chain. They are logically independent of each other, each is independent of Reichenbach's principle of the common cause, and each is a consequence of the causal Markov condition. Simple examples show that causal incompleteness means that screening-off may fail to obtain. We derive a stronger (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Introducing the second theorem.Peter Smith - unknown
    This episode introduces the Second Incompleteness Theorem, says something about what it takes to prove it, and why it matters. Just two very quick reminders before we start. We said..
     
    Export citation  
     
    Bookmark  
  49.  94
    Review of T. Franzen, Godel's theorem: An incomplete guide to its use and abuse[REVIEW]S. Shapiro - 2006 - Philosophia Mathematica 14 (2):262-264.
    This short book has two main purposes. The first is to explain Kurt Gödel's first and second incompleteness theorems in informal terms accessible to a layperson, or at least a non-logician. The author claims that, to follow this part of the book, a reader need only be familiar with the mathematics taught in secondary school. I am not sure if this is sufficient. A grasp of the incompleteness theorems, even at the level of ‘the big picture’, might (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  50.  68
    An Indian solution to 'incompleteness'.U. A. Vinaya Kumar - 2009 - AI and Society 24 (4):351-364.
    Kurt Gödel’s Incompleteness theorem is well known in Mathematics/Logic/Philosophy circles. Gödel was able to find a way for any given P (UTM), (read as, “P of UTM” for “Program of Universal Truth Machine”), actually to write down a complicated polynomial that has a solution iff (=if and only if), G is true, where G stands for a Gödel-sentence. So, if G’s truth is a necessary condition for the truth of a given polynomial, then P (UTM) has to answer (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 972