Results for 'Arithmetic Principles'

951 found
Order:
  1. Counting and arithmetic principles first.Rochel Gelman - 2008 - Behavioral and Brain Sciences 31 (6):653-654.
    The meaning and function of counting are subservient to the arithmetic principles of ordering, addition, and subtraction for positive cardinal values. Beginning language learners can take advantage of their nonverbal knowledge of counting and arithmetic principles to acquire sufficient knowledge of their initial verbal instantiations and move onto a relevant learning path to assimilate input for more advanced, abstract understandings.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  2. Which Arithmetization for Which Logicism? Russell on Relations and Quantities in The Principles of Mathematics.Sébastien Gandon - 2008 - History and Philosophy of Logic 29 (1):1-30.
    This article aims first at showing that Russell's general doctrine according to which all mathematics is deducible ‘by logical principles from logical principles’ does not require a preliminary reduction of all mathematics to arithmetic. In the Principles, mechanics (part VII), geometry (part VI), analysis (part IV–V) and magnitude theory (part III) are to be all directly derived from the theory of relations, without being first reduced to arithmetic (part II). The epistemological importance of this point (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  15
    A New Principle In The Interpretability Logic Of All Reasonable Arithmetical Theories.Evan Goris & Joost Joosten - 2011 - Logic Journal of the IGPL 19 (1):1-17.
    The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL.In this paper we present a new principle R in IL. We show that R does not follow from the logic (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  4.  33
    The FAN principle and weak König's lemma in herbrandized second-order arithmetic.Fernando Ferreira - 2020 - Annals of Pure and Applied Logic 171 (9):102843.
    We introduce a herbrandized functional interpretation of a first-order semi-intuitionistic extension of Heyting Arithmetic and study its main properties. We then extend the interpretation to a certain system of second-order arithmetic which includes a (classically false) formulation of the FAN principle and weak König's lemma. It is shown that any first-order formula provable in this system is classically true. It is perhaps worthy of note that, in our interpretation, second-order variables are interpreted by finite sets of natural numbers.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  45
    (1 other version)Reflection Principles in Fragments of Peano Arithmetic.Hiroakira Ono - 1987 - Mathematical Logic Quarterly 33 (4):317-333.
  6. Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  7.  26
    Implication principles in Routley Arithmetic.C. E. Mortensen - 2019 - In Z. Weber (ed.), Ultralogic as Universal?. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol 396. Springer.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  28
    Understanding and Using Principles of Arithmetic: Operations Involving Negative Numbers.Richard W. Prather & Martha W. Alibali - 2008 - Cognitive Science 32 (2):445-457.
    Previous work has investigated adults' knowledge of principles for arithmetic with positive numbers (Dixon, Deets, & Bangert, 2001). The current study extends this past work to address adults' knowledge of principles of arithmetic with a negative number, and also investigates links between knowledge of principles and problem representation. Participants (N = 44) completed two tasks. In the Evaluation task, participants rated how well sets of equations were solved. Some sets violated principles of arithmetic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Transfer principles in nonstandard intuitionistic arithmetic.Jeremy Avigad & Jeffrey Helzner - 2002 - Archive for Mathematical Logic 41 (6):581-602.
    Using a slight generalization, due to Palmgren, of sheaf semantics, we present a term-model construction that assigns a model to any first-order intuitionistic theory. A modification of this construction then assigns a nonstandard model to any theory of arithmetic, enabling us to reproduce conservation results of Moerdijk and Palmgren for nonstandard Heyting arithmetic. Internalizing the construction allows us to strengthen these results with additional transfer rules; we then show that even trivial transfer axioms or minor strengthenings of these (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  10.  42
    Harrington’s principle in higher order arithmetic.Yong Cheng & Ralf Schindler - 2015 - Journal of Symbolic Logic 80 (2):477-489.
    LetZ2,Z3, andZ4denote 2nd, 3rd, and 4thorder arithmetic, respectively. We let Harrington’s Principle, HP, denote the statement that there is a realxsuch that everyx-admissible ordinal is a cardinal inL. The known proofs of Harrington’s theorem “$Det\left$implies 0♯exists” are done in two steps: first show that$Det\left$implies HP, and then show that HP implies 0♯exists. The first step is provable inZ2. In this paper we show thatZ2+ HP is equiconsistent with ZFC and thatZ3+ HP is equiconsistent with ZFC + there exists a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  11.  39
    Transfer principles in nonstandard intuitionistic arithmetic.Jeremy Avigad & Jeremy Helzner - 2002 - Archive for Mathematical Logic 41 (6):581-602.
    Using a slight generalization, due to Palmgren, of sheaf semantics, we present a term-model construction that assigns a model to any first-order intuitionistic theory. A modification of this construction then assigns a nonstandard model to any theory of arithmetic, enabling us to reproduce conservation results of Moerdijk and Palmgren for nonstandard Heyting arithmetic. Internalizing the construction allows us to strengthen these results with additional transfer rules; we then show that even trivial transfer axioms or minor strengthenings of these (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  12.  19
    Why arithmetic is useful for understanding the Good as the principle of forms in Plato’s Republic.Moon-Heum Yang - 2011 - Plato Journal 11.
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  31
    Mathematical Logic and Formal Arithmetic: Key Definitions and Principles.John-Michael Kuczynski - 2016 - Amazon Digital Services LLC.
    This books states, as clearly and concisely as possible, the most fundamental principles of set-theory and mathematical logic. Included is an original proof of the incompleteness of formal logic. Also included are clear and rigorous definitions of the primary arithmetical operations, as well as clear expositions of the arithmetic of transfinite cardinals.
    Direct download  
     
    Export citation  
     
    Bookmark  
  14. Context principle, fruitfulness of logic and the cognitive value of arithmetic in frege.Marco Antonio Ruffino - 1991 - History and Philosophy of Logic 12 (2):185-194.
    I try to reconstruct how Frege thought to reconcile the cognitive value of arithmetic with its analytical nature. There is evidence in Frege's texts that the epistemological formulation of the context principle plays a decisive role; it provides a way of obtaining concepts which are truly fruitful and whose contents cannot be grasped beforehand. Taking the definitions presented in the Begriffsschrift,I shall illustrate how this schema is intended to work.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  35
    On the limit existence principles in elementary arithmetic and Σ n 0 -consequences of theories.Lev D. Beklemishev & Albert Visser - 2005 - Annals of Pure and Applied Logic 136 (1-2):56-74.
    We study the arithmetical schema asserting that every eventually decreasing elementary recursive function has a limit. Some other related principles are also formulated. We establish their relationship with restricted parameter-free induction schemata. We also prove that the same principle, formulated as an inference rule, provides an axiomatization of the Σ2-consequences of IΣ1.Using these results we show that ILM is the logic of Π1-conservativity of any reasonable extension of parameter-free Π1-induction schema. This result, however, cannot be much improved: by adapting (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  16.  48
    The Pigeonhole Principle and Fragments of Arithmetic.C. Dimitracopoulos & J. Paris - 1986 - Mathematical Logic Quarterly 32 (1-5):73-80.
  17.  26
    Refining the arithmetical hierarchy of classical principles.Makoto Fujiwara & Taishi Kurahashi - 2022 - Mathematical Logic Quarterly 68 (3):318-345.
    We refine the arithmetical hierarchy of various classical principles by finely investigating the derivability relations between these principles over Heyting arithmetic. We mainly investigate some restricted versions of the law of excluded middle, De Morgan's law, the double negation elimination, the collection principle and the constant domain axiom.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Objectivity and the principle of duality: Paragraph 26 of Frege's Foundations of arithmetic.Jean-Pierre Belna - 2006 - Revue d'Histoire des Sciences 59 (2):319.
     
    Export citation  
     
    Bookmark  
  19.  33
    Predicative arithmetic.Edward Nelson - 1986 - Princeton, N.J.: Princeton University Press.
    This book develops arithmetic without the induction principle, working in theories that are interpretable in Raphael Robinson's theory Q. Certain inductive formulas, the bounded ones, are interpretable in Q. A mathematically strong, but logically very weak, predicative arithmetic is constructed. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  20.  41
    The context principle and implicit definitions : towards an account of our a priori knowledge of arithmetic.Philip A. Ebert - 2005 - Dissertation, St. Andrews
    This thesis is concerned with explaining how a subject can acquire a priori knowledge of arithmetic. Every account for arithmetical, and in general mathematical knowledge faces Benacerraf's well-known challenge, i.e. how to reconcile the truths of mathematics with what can be known by ordinary human thinkers. I suggest four requirements that jointly make up this challenge and discuss and reject four distinct solutions to it. This will motivate a broadly Fregean approach to our knowledge of arithmetic and mathematics (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. A small reflection principle for bounded arithmetic.Rineke Verbrugge & Albert Visser - 1994 - Journal of Symbolic Logic 59 (3):785-812.
    We investigate the theory IΔ 0 + Ω 1 and strengthen [Bu86. Theorem 8.6] to the following: if NP ≠ co-NP. then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic. i.e. $I\delta_0 + \Omega_1 + \nvdash \forall b \forall c (\exists a(\operatorname{Prf}(a.c) \wedge \forall = \leq a \neg \operatorname{Prf} (z.b))\\ \rightarrow \operatorname{Prov} (\ulcorner \exists a(\operatorname{Prf}(a. \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z.\bar{b})) \urcorner)).$ Next we study a "small reflection principle" in bounded arithmetic. We prove (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  22.  24
    Ramsey’s theorem for pairs and K colors as a sub-classical principle of arithmetic.Stefano Berardi & Silvia Steila - 2017 - Journal of Symbolic Logic 82 (2):737-753.
    The purpose is to study the strength of Ramsey’s Theorem for pairs restricted to recursive assignments ofk-many colors, with respect to Intuitionistic Heyting Arithmetic. We prove that for every natural number$k \ge 2$, Ramsey’s Theorem for pairs and recursive assignments ofkcolors is equivalent to the Limited Lesser Principle of Omniscience for${\rm{\Sigma }}_3^0$formulas over Heyting Arithmetic. Alternatively, the same theorem over intuitionistic arithmetic is equivalent to: for every recursively enumerable infinitek-ary tree there is some$i < k$and some branch (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  60
    Darwin's Botanical Arithmetic and the "Principle of Divergence," 1854-1858.Janet Browne - 1980 - Journal of the History of Biology 13 (1):53 - 89.
  24.  45
    Two new series of principles in the interpretability logic of all reasonable arithmetical theories.Evan Goris & Joost J. Joosten - 2020 - Journal of Symbolic Logic 85 (1):1-25.
    The provability logic of a theory T captures the structural behavior of formalized provability in T as provable in T itself. Like provability, one can formalize the notion of relative interpretability giving rise to interpretability logics. Where provability logics are the same for all moderately sound theories of some minimal strength, interpretability logics do show variations.The logic IL is defined as the collection of modal principles that are provable in any moderately sound theory of some minimal strength. In this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  62
    On the completenes principle: A study of provability in heyting's arithmetic and extensions.Albert Visser - 1982 - Annals of Mathematical Logic 22 (3):263-295.
  26.  28
    Relative arithmetic.Sam Sanders - 2010 - Mathematical Logic Quarterly 56 (6):564-572.
    In nonstandard mathematics, the predicate ‘x is standard’ is fundamental. Recently, ‘relative’ or ‘stratified’ nonstandard theories have been developed in which this predicate is replaced with ‘x is y -standard’. Thus, objects are not standard in an absolute sense, but standard relative to other objects and there is a whole stratified universe of ‘levels’ or ‘degrees’ of standardness. Here, we study stratified nonstandard arithmetic and the related transfer principle. Using the latter, we obtain the ‘reduction theorem’ which states that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  70
    Nonstandard arithmetic and reverse mathematics.H. Jerome Keisler - 2006 - Bulletin of Symbolic Logic 12 (1):100-125.
    We show that each of the five basic theories of second order arithmetic that play a central role in reverse mathematics has a natural counterpart in the language of nonstandard arithmetic. In the earlier paper [3] we introduced saturation principles in nonstandard arithmetic which are equivalent in strength to strong choice axioms in second order arithmetic. This paper studies principles which are equivalent in strength to weaker theories in second order arithmetic.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  28. Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  29.  6
    Charles Davenant on the objectives and principles of “political arithmetic” as an instrument of public administration.Князев П.Ю - 2020 - Philosophy and Culture (Russian Journal) 1:1-14.
    In the late XVII century in England has establishes the school of “political arithmetic”, which goal consisted in the analysis of social phenomena on the basis of quantitative indicators. Its main representatives became William Petty, John Graunt and Charles Davenant (1656-1714). The latter left a mark in the history of England as a philosopher, politician and publicist, who made a significant contribution to the development and implementation of the methods of “political arithmetic”. The object of this research is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  40
    (1 other version)On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness.Ulrich Kohlenbach - 1998 - Annals of Pure and Applied Logic 95 (1-3):257-285.
    In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems Tnω in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive functions of low growth. We reduce the use of instances of these principles in Tnω-proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31. A Logical Foundation of Arithmetic.Joongol Kim - 2015 - Studia Logica 103 (1):113-144.
    The aim of this paper is to shed new light on the logical roots of arithmetic by presenting a logical framework that takes seriously ordinary locutions like ‘at least n Fs’, ‘n more Fs than Gs’ and ‘n times as many Fs as Gs’, instead of paraphrasing them away in terms of expressions of the form ‘the number of Fs’. It will be shown that the basic concepts of arithmetic can be intuitively defined in the language of ALA, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  32. Deflationism, Arithmetic, and the Argument from Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  33.  51
    On the relation between choice and comprehension principles in second order arithmetic.Andrea Cantini - 1986 - Journal of Symbolic Logic 51 (2):360-373.
    We give a new elementary proof of the comparison theorem relating $\sum^1_{n + 1}-\mathrm{AC}\uparrow$ and $\Pi^1_n -\mathrm{CA}\uparrow$ ; the proof does not use Skolem theories. By the same method we prove: a) $\sum^1_{n + 1}-\mathrm{DC} \uparrow \equiv (\Pi^1_n -CA)_{ , for suitable classes of sentences; b) $\sum^1_{n+1}-DC \uparrow$ proves the consistency of (Π 1 n -CA) ω k, for finite k, and hence is stronger than $\sum^1_{n+1}-AC \uparrow$ . a) and b) answer a question of Feferman and Sieg.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  34. Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.
    Frege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume’s Principle, which says that the number of F s is identical to the number of Gs if and only if the F s and the Gs can be one-to-one correlated. According to Frege’s Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume’s Principle, the other, with the underlying (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   40 citations  
  35.  74
    Predicate Logics of Constructive Arithmetical Theories.Albert Visser - 2006 - Journal of Symbolic Logic 71 (4):1311 - 1326.
    In this paper, we show that the predicate logics of consistent extensions of Heyting's Arithmetic plus Church's Thesis with uniqueness condition are complete $\Pi _{2}^{0}$. Similarly, we show that the predicate logic of HA*, i.e. Heyting's Arithmetic plus the Completeness Principle (for HA*) is complete $\Pi _{2}^{0}$. These results extend the known results due to Valery Plisko. To prove the results we adapt Plisko's method to use Tennenbaum's Theorem to prove 'categoricity of interpretations' under certain assumptions.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  47
    The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  37.  19
    Nonstandard arithmetic and recursive comprehension.H. Keisler - 2010 - Annals of Pure and Applied Logic 161 (8):1047-1062.
    First order reasoning about hyperintegers can prove things about sets of integers. In the author’s paper Nonstandard Arithmetic and Reverse Mathematics, Bulletin of Symbolic Logic 12 100–125, it was shown that each of the “big five” theories in reverse mathematics, including the base theory, has a natural nonstandard counterpart. But the counterpart of has a defect: it does not imply the Standard Part Principle that a set exists if and only if it is coded by a hyperinteger. In this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Arithmetic on the Cheap in advance.Francesca Boccuni - forthcoming - Thought: A Journal of Philosophy.
    Scottish Neologicism aims to found arithmetic on full second-order logic and Hume’s Principle, stating that the number of the Fs is identical with the number of the Gs if, and only if, there are as many Fs as Gs. However, Neologicism faces the problem of the logical ontology, according to which the underlying second-order logic involves ontological commitments. This paper addresses this issue by substituting second-order logic by Boolos’s plural logic, augmented by the Plural Frege Quantifier F modelled on (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  43
    An unexpected separation result in Linearly Bounded Arithmetic.Arnold Beckmann & Jan Johannsen - 2005 - Mathematical Logic Quarterly 51 (2):191-200.
    The theories Si1 and Ti1 are the analogues of Buss' relativized bounded arithmetic theories in the language where every term is bounded by a polynomial, and thus all definable functions grow linearly in length. For every i, a Σbi+1-formula TOPi, which expresses a form of the total ordering principle, is exhibited that is provable in Si+11 , but unprovable in Ti1. This is in contrast with the classical situation, where Si+12 is conservative over Ti2 w. r. t. Σbi+1-sentences. The (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  40. Two-Sorted Frege Arithmetic is Not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic 16 (4):1199-1232.
    Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. The Principle of Equivalence as a Criterion of Identity.Ryan Samaroo - 2020 - Synthese 197 (8):3481-3505.
    In 1907 Einstein had the insight that bodies in free fall do not “feel” their own weight. This has been formalized in what is called “the principle of equivalence.” The principle motivated a critical analysis of the Newtonian and special-relativistic concepts of inertia, and it was indispensable to Einstein’s development of his theory of gravitation. A great deal has been written about the principle. Nearly all of this work has focused on the content of the principle and whether it has (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  42.  93
    In defense of epistemic arithmetic.Leon Horsten - 1998 - Synthese 116 (1):1-25.
    This paper presents a defense of Epistemic Arithmetic as used for a formalization of intuitionistic arithmetic and of certain informal mathematical principles. First, objections by Allen Hazen and Craig Smorynski against Epistemic Arithmetic are discussed and found wanting. Second, positive support is given for the research program by showing that Epistemic Arithmetic can give interesting formulations of Church's Thesis.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  43.  23
    A comparison of mental arithmetic performance in time and frequency domains.Anmar Abdul-Rahman - 2022 - Frontiers in Psychology 13.
    The Heisenberg-Gabor uncertainty principle defines the limits of information resolution in both time and frequency domains. The limit of resolution discloses unique properties of a time series by frequency decomposition. However, classical methods such as Fourier analysis are limited by spectral leakage, particularly in longitudinal data with shifting periodicity or unequal intervals. Wavelet transformation provides a workable compromise by decomposing the signal in both time and frequency through translation and scaling of a basis function followed by correlation or convolution with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44. Whither relevant arithmetic?Harvey Friedman & Robert K. Meyer - 1992 - Journal of Symbolic Logic 57 (3):824-831.
    Based on the relevant logic R, the system R# was proposed as a relevant Peano arithmetic. R# has many nice properties: the most conspicuous theorems of classical Peano arithmetic PA are readily provable therein; it is readily and effectively shown to be nontrivial; it incorporates both intuitionist and classical proof methods. But it is shown here that R# is properly weaker than PA, in the sense that there is a strictly positive theorem QRF of PA which is unprovable (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  45.  53
    A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic.Takako Nemoto & Sato Kentaro - 2022 - Journal of Symbolic Logic 87 (2):437-497.
    We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with$\textbf {PRA}$or consistent provably in$\textbf {PRA}$) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  46.  25
    Conservation Theorems on Semi-Classical Arithmetic.Makoto Fujiwara & Taishi Kurahashi - 2023 - Journal of Symbolic Logic 88 (4):1469-1496.
    We systematically study conservation theorems on theories of semi-classical arithmetic, which lie in-between classical arithmetic $\mathsf {PA}$ and intuitionistic arithmetic $\mathsf {HA}$. Using a generalized negative translation, we first provide a structured proof of the fact that $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ where ${\Sigma _k}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$. In addition, we show that this conservation theorem is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  45
    On principles between ∑1- and ∑2-induction, and monotone enumerations.Alexander P. Kreuzer & Keita Yokoyama - 2016 - Journal of Mathematical Logic 16 (1):1650004.
    We show that many principles of first-order arithmetic, previously only known to lie strictly between [Formula: see text]-induction and [Formula: see text]-induction, are equivalent to the well-foundedness of [Formula: see text]. Among these principles are the iteration of partial functions of Hájek and Paris, the bounded monotone enumerations principle by Chong, Slaman, and Yang, the relativized Paris–Harrington principle for pairs, and the totality of the relativized Ackermann–Péter function. With this we show that the well-foundedness of [Formula: see (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  48. Arithmetic Reflection without Intuition.Bob Hale - 1999 - Aristotelian Society Supplementary Volume 73 (1):75-98.
    Michael Potter considers several versions of the view that the truths of arithmetic are analytic and finds difficulties with all of them. There is, I think, no gainsaying his claim that arithmetic cannot be analytic in Kant’s sense. However, his pessimistic assessment of the view that what is now widely called Hume’s principle can serve as an analytic foundation for arithmetic seems to me unjustified. I consider and offer some answers to the objections he brings against it.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  49. Reflecting in epistemic arithmetic.Leon Horsten - 1996 - Journal of Symbolic Logic 61 (3):788-801.
    An epistemic formalization of arithmetic is constructed in which certain non-trivial metatheoretical inferences about the system itself can be made. These inferences involve the notion of provability in principle, and cannot be made in any consistent extensions of Stewart Shapiro's system of epistemic arithmetic. The system constructed in the paper can be given a modal-structural interpretation.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  50. The (Metaphysical) Foundations of Arithmetic?Thomas Donaldson - 2017 - Noûs 51 (4):775-801.
    Gideon Rosen and Robert Schwartzkopff have independently suggested (variants of) the following claim, which is a varian of Hume's Principle: -/- When the number of Fs is identical to the number of Gs, this fact is grounded by the fact that there is a one-to-one correspondence between the Fs and Gs. -/- My paper is a detailed critique of the proposal. I don't find any decisive refutation of the proposal. At the same time, it has some consequences which many will (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   39 citations  
1 — 50 / 951