Results for 'Riemann–Cartan–Weyl connections'

967 found
Order:
  1.  74
    Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  48
    Torsion Fields, Cartan–Weyl Space–Time and State-Space Quantum Geometries, their Brownian Motions, and the Time Variables.Diego L. Rapoport - 2007 - Foundations of Physics 37 (4-5):813-854.
    We review the relation between spacetime geometries with trace-torsion fields, the so-called Riemann–Cartan–Weyl (RCW) geometries, and their associated Brownian motions. In this setting, the drift vector field is the metric conjugate of the trace-torsion one-form, and the laplacian defined by the RCW connection is the differential generator of the Brownian motions. We extend this to the state-space of non-relativistic quantum mechanics and discuss the relation between a non-canonical quantum RCW geometry in state-space associated with the gradient of the quantum-mechanical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  61
    On the Unification of Geometric and Random Structures through Torsion Fields: Brownian Motions, Viscous and Magneto-fluid-dynamics.Diego L. Rapoport - 2005 - Foundations of Physics 35 (7):1205-1244.
    We present the unification of Riemann–Cartan–Weyl (RCW) space-time geometries and random generalized Brownian motions. These are metric compatible connections (albeit the metric can be trivially euclidean) which have a propagating trace-torsion 1-form, whose metric conjugate describes the average motion interaction term. Thus, the universality of torsion fields is proved through the universality of Brownian motions. We extend this approach to give a random symplectic theory on phase-space. We present as a case study of this approach, the invariant Navier–Stokes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  55
    On Metric and Matter in Unconnected, Connected, and Metrically Connected Manifolds.Horst-Heino von Borzeszkowski & Hans-Jürgen Treder - 2004 - Foundations of Physics 34 (10):1541-1572.
    From Einstein's point of view, his General Relativity Theory had strengths as well as failings. For him, its shortcoming mainly was that it did not unify gravitation and electromagnetism and did not provide solutions to field equations which can be interpreted as particle models with discrete mass and charge spectra, As a consequence, General Relativity did not solve the quantum problem, either. Einstein tried to get rid of the shortcomings without losing the achievements of General Relativity Theory. Stimulated by papers (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  48
    The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics.Luciano Boi - 2019 - Kairos 22 (1):1-53.
    According to Kant, the axioms of intuition, i.e. space and time, must provide an organization of the sensory experience. However, this first orderliness of empirical sensations seems to depend on a kind of faculty pertaining to subjectivity, rather than to the encounter of these same intuitions with the real properties of phenomena. Starting from an analysis of some very significant developments in mathematical and theoretical physics in the last decades, in which intuition played an important role, we argue that nevertheless (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  34
    (1 other version)Hermann Weyl's Raum‐Zeit‐Materie and a General Introduction to His Scientific Work. [REVIEW]David Rowe - 2002 - Isis 93:326-327.
    In the range of his intellectual interests and the profundity of his mathematical thought Hermann Weyl towered above his contemporaries, many of whom viewed him with awe. This volume, the most ambitious study to date of Weyl's singular contributions to mathematics, physics, and philosophy, looks at the man and his work from a variety of perspectives, though its gaze remains fairly steadily fixed on Weyl the geometer and space‐time theorist. Structurally, the book falls into two parts, described in the general (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  83
    An Assessment of Evans' Unified Field Theory I.Friedrich W. Hehl - 2007 - Foundations of Physics 38 (1):7-37.
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe ϑ α and a (metric compatible) Lorentz connection Γ α β . These two potentials yield the field strengths torsion T α and curvature R α β . Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe ϑ α to be proportional to four extended electromagnetic (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  40
    Classical versus quantum gravity.Wolfgang Drechsler - 1993 - Foundations of Physics 23 (2):261-276.
    Is Einstein's metric theory of gravitation to be quantized to yield a complete and logically consistent picture of the geometry of the real world in the presence of quantized material sources? To answer this question, we give arguments that there is a consistent way to extend general relativity to small distances by incorporating further geometric quantities at the level of the connection into the theory and introducing corresponding field equations for their determination, allowing thereby the metric and the Levi-Civita connection (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. From Peripheral Mathematics to a New Theory of Gravitation.John Stachel, Hermann Grassmann, Tullio Levi-Civita, Hermann Weyl & Elie Cartan - 2007 - Boston Studies in the Philosophy of Science 250:1041-1129.
  10.  57
    Some Mathematical, Epistemological, and Historical Reflections on the Relationship Between Geometry and Reality, Space–Time Theory and the Geometrization of Theoretical Physics, from Riemann to Weyl and Beyond.Luciano Boi - 2019 - Foundations of Science 24 (1):1-38.
    The history and philosophy of science are destined to play a fundamental role in an epoch marked by a major scientific revolution. This ongoing revolution, principally affecting mathematics and physics, entails a profound upheaval of our conception of space, space–time, and, consequently, of natural laws themselves. Briefly, this revolution can be summarized by the following two trends: by the search for a unified theory of the four fundamental forces of nature, which are known, as of now, as gravity, electromagnetism, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  72
    Riemann–Weyl in Deleuze's Bergsonism and the Constitution of the Contemporary Physico-Mathematical Space.Martin Calamari - 2015 - Deleuze and Guatarri Studies 9 (1):59-87.
    In recent years, the ideas of the mathematician Bernhard Riemann have come to the fore as one of Deleuze's principal sources of inspiration in regard to his engagements with mathematics, and the history of mathematics. Nevertheless, some relevant aspects and implications of Deleuze's philosophical reception and appropriation of Riemann's thought remain unexplored. In the first part of the paper I will begin by reconsidering the first explicit mention of Riemann in Deleuze's work, namely, in the second chapter of Bergsonism. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  12.  32
    Riemann’s and Helmholtz-Lie’s problems of space from Weyl’s relativistic perspective.Julien Bernard - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 61:41-56.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Born’s Reciprocal Gravity in Curved Phase-Spaces and the Cosmological Constant.Carlos Castro - 2012 - Foundations of Physics 42 (8):1031-1055.
    The main features of how to build a Born’s Reciprocal Gravitational theory in curved phase-spaces are developed. By recurring to the nonlinear connection formalism of Finsler geometry a generalized gravitational action in the 8D cotangent space (curved phase space) can be constructed involving sums of 5 distinct types of torsion squared terms and 2 distinct curvature scalars ${\mathcal{R}}, {\mathcal{S}}$ which are associated with the curvature in the horizontal and vertical spaces, respectively. A Kaluza-Klein-like approach to the construction of the curvature (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Connecting the revolutionary with the conventional: Rethinking the differences between the works of Brouwer, Heyting, and Weyl.Kati Kish Bar-On - 2023 - Philosophy of Science 90 (3):580–602.
    Brouwer’s intuitionism was a far-reaching attempt to reform the foundations of mathematics. While the mathematical community was reluctant to accept Brouwer’s work, its response to later-developed brands of intuitionism, such as those presented by Hermann Weyl and Arend Heyting, was different. The paper accounts for this difference by analyzing the intuitionistic versions of Brouwer, Weyl, and Heyting in light of a two-tiered model of the body and image of mathematical knowledge. Such a perspective provides a richer account of each story (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  32
    Modified Weyl theory and extended elementary objects.W. Drechsler - 1989 - Foundations of Physics 19 (12):1479-1497.
    To represent extension of objects in particle physics, a modified Weyl theory is used by gauging the curvature radius of the local fibers in a soldered bundle over space-time possessing a homogeneous space G/H of the (4, 1)-de Sitter group G as fiber. Objects with extension determined by a fundamental length parameter R0 appear as islands D(i) in space-time characterized by a geometry of the Cartan-Weyl type (i.e., involving torsion and modified Weyl degrees of freedom). Farther away from the domains (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  97
    Hermann Weyl on Minkowskian Space–Time and Riemannian Geometry.Yvon Gauthier - 2005 - International Studies in the Philosophy of Science 19 (3):261 – 269.
    Hermann Weyl as a founding father of field theory in relativistic physics and quantum theory always stressed the internal logic of mathematical and physical theories. In line with his stance in the foundations of mathematics, Weyl advocated a constructivist approach in physics and geometry. An attempt is made here to present a unified picture of Weyl's conception of space-time theories from Riemann to Minkowski. The emphasis is on the mathematical foundations of physics and the foundational significance of a constructivist philosophical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  56
    Cartan’s Spiral Staircase in Physics and, in Particular, in the Gauge Theory of Dislocations.Markus Lazar & Friedrich W. Hehl - 2010 - Foundations of Physics 40 (9-10):1298-1325.
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the “helical staircase”, which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan’s discussion, since he (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Bernhard Riemann: Riemanniana Selecta.Jose Ferreiros - 2000 - Madrid: CSIC.
    A book-length study of Riemann's multi-dimensional work (in Spanish), which considers his contributions to physics, philosophy and mathematics. Plus a bi-lingual edition (German-Spanish) of some of his landmark papers: the lecture on geometry, with Weyl's comments; the paper introducing the Riemann Conjecture, part of his 1857 paper on function theory; all of the philosophical fragments, etc. These different contributions, and their interconnections, are carefully studied in the introductory essay of 150 pages.
    No categories
     
    Export citation  
     
    Bookmark  
  19.  79
    Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times.James Owen Weatherall - 2016 - Philosophy of Science 83 (1):82-92.
    I address a question recently raised by Simon Saunders concerning the relationship between the space-time structure of Newton-Cartan theory and that of what I will call “Maxwell-Huygens space-time.” This discussion will also clarify a connection between Saunders’s work and a recent paper by Eleanor Knox.
    No categories
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  20.  75
    Conformally Flat Spacetimes and Weyl Frames.C. Romero, J. B. Fonseca-Neto & M. Laura Pucheu - 2012 - Foundations of Physics 42 (2):224-240.
    We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The Cartan-Einstein Unification with Teleparallelism and the Discrepant Measurements of Newton's Constant G.Jose G. Vargas & Douglas G. Torr - 1999 - Foundations of Physics 29 (2):145-200.
    We show that in 1929 Cartan and Einstein almost produced a theory in which the electromagnetic (EM) field constitutes the time-like 2-form part of the torsion of Finslerian teleparallel connections on pseudo-Riemannian metrics. The primitive state of the theory of these connections would not, and did not, permit Cartan and Einstein to realize how their torsion field equations contained the Maxwell system and how the Finslerian torsion contains the EM field. Cartan and Einstein discussed curvature field equations, though (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  49
    The teleparallel equivalent of Newton–Cartan gravity.James Read & Nicholas Teh - unknown
    We construct a notion of teleparallelization for Newton-Cartan theory, and show that the teleparallel equivalent of this theory is Newtonian gravity; furthermore, we show that this result is consistent with teleparallelization in general relativity, and can be obtained by null-reducing the teleparallel equivalent of a five-dimensional gravitational wave solution. This work thus strengthens substantially the connections between four theories: Newton-Cartan theory, Newtonian gravitation theory, general relativity, and teleparallel gravity.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  23. Edge Modes and Dressing Fields for the Newton–Cartan Quantum Hall Effect.William J. Wolf, James Read & Nicholas J. Teh - 2022 - Foundations of Physics 53 (1):1-24.
    It is now well-known that Newton–Cartan theory is the correct geometrical setting for modelling the quantum Hall effect. In addition, in recent years edge modes for the Newton–Cartan quantum Hall effect have been derived. However, the existence of these edge modes has, as of yet, been derived using only orthodox methodologies involving the breaking of gauge-invariance; it would be preferable to derive the existence of such edge modes in a gauge-invariant manner. In this article, we employ recent work by Donnelly (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  24.  36
    Le maniérisme épistémologique de Gilles Ch'telet Relativité et exploration de l'a priori esthétique chez Husserl selon Weyl et Ch'telet.Carlos Lobo - 2017 - Revue de Synthèse 138 (1-4):279-313.
    Les variations de Gilles Châtelet Sur une petite phrase de Riemann, montrent que loin de constituer une variante de la « philosophie baroque » telle que la définit Deleuze, son maniérisme épistémologique le rapproche étonnamment de l’attention aux « modes de données » et aux « modes de visée » caractéristique de la phénoménologie transcendantale. Comme Hermann Weyl, il voit à l’œuvre dans la phénoménologie husser-lienne un approfondissement de l’esthétique transcendantale kantienne, en la tenant pour une approche philosophique pertinente et (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25. Which symmetry? Noether, Weyl, and conservation of electric charge.A. K. - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (1):3-22.
    In 1918, Emmy Noether published a (now famous) theorem establishing a general connection between continuous 'global' symmetries and conserved quantities. In fact, Noether's paper contains two theorems, and the second of these deals with 'local' symmetries; prima facie, this second theorem has nothing to do with conserved quantities. In the same year, Hermann Weyl independently made the first attempt to derive conservation of electric charge from a postulated gauge symmetry. In the light of Noether's work, it is puzzling that Weyl's (...)
     
    Export citation  
     
    Bookmark  
  26.  14
    Frobenius Quantales, Serre Quantales and the Riemann–Roch Theorem.Wolfgang Rump - 2021 - Studia Logica 110 (2):405-427.
    The Riemann–Roch theorem for algebraic curves is derived from a theorem for Girard quantales. Serre duality is shown to be a quantalic phenomenon. An example provides a Girard quantale satisfying the Riemann–Roch theorem, where the associated curve is non-connected and irreducible.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  60
    Local and Non-Local Aspects of Quantum Gravity.H.-H. V. Borzeszkowski, B. K. Datta, V. De Sabbata, L. Ronchetti & H.-J. Treder - 2002 - Foundations of Physics 32 (11):1701-1716.
    The analysis of the measurement of gravitational fields leads to the Rosenfeld inequalities. They say that, as an implication of the equivalence of the inertial and passive gravitational masses of the test body, the metric cannot be attributed to an operator that is defined in the frame of a local canonical quantum field theory. This is true for any theory containing a metric, independently of the geometric framework under consideration and the way one introduces the metric in it. Thus, to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl.Paolo Mancosu & T. A. Ryckman - 2002 - Philosophia Mathematica 10 (2):130-202.
    Recently discovered correspondence from Oskar Becker to Hermann Weyl sheds new light on Weyl's engagement with Husserlian transcendental phenomenology in 1918-1927. Here the last two of these letters, dated July and August, 1926, dealing with issues in the philosophy of mathematics are presented, together with background and a detailed commentary. The letters provide an instructive context for re-assessing the connection between intuitionism and phenomenology in Weyl's foundational thought, and for understanding Weyl's term ‘symbolic construction’ as marking his own considered position (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  29.  33
    MOND-Like Acceleration in Integrable Weyl Geometric Gravity.Erhard Scholz - 2016 - Foundations of Physics 46 (2):176-208.
    We study a Weyl geometric scalar tensor theory of gravity with scalar field \ and scale invariant “aquadratic” kinematical Lagrange density. The Weylian scale connection in Einstein gauge induces an additional acceleration. In the weak field, static, low velocity limit it acquires the deep MOND form of Milgrom/Bekenstein’s gravity. The energy momentum of \ leads to another add on to Newton acceleration. Both additional accelerations together imply a MOND-ian phenomenology of the model. It has unusual transition functions \, \nu _w\). (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  29
    Proof of the Spin Statistics Connection 2: Relativistic Theory.Enrico Santamato & Francesco De Martini - 2017 - Foundations of Physics 47 (12):1609-1625.
    The traditional standard theory of quantum mechanics is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper :858–873, 2015) we presented a proof of the spin–statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics”. In the present paper, by the same theory the proof of the spin–statistics theorem is extended to the relativistic domain (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  93
    An Assessment of Evans' Unified Field Theory II.Friedrich W. Hehl & Yuri N. Obukhov - 2007 - Foundations of Physics 38 (1):38-46.
    Evans attempted to develop a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. In an accompanying paper I, we analyzed this theory and summarized it in nine equations. We now propose a variational principle for a theory that implements some of the ideas that have been (imprecisely) indicated by Evans and show that it yields two field equations. The second field equation is algebraic in the torsion and we can resolve (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  24
    The structure of singularities in space-times with torsion.L. C. Garcia de Andrade - 1990 - Foundations of Physics 20 (4):403-416.
    An analysis of the extension of the Hawking-Penrose singularity theorem to Riemann-Cartan U4 space-times with torsion and spin density is undertaken. The minimal coupling principle in U4 is used to formulate a new expression for the convergence condition autoparallels in Einstein-Cartan theory. The Gödel model with torsion is given as an example.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  75
    On the chiral anomaly in non-Riemannian spacetimes.Yuri N. Obukhov, Eckehard W. Mielke, Jan Budczies & Friedrich W. Hehl - 1997 - Foundations of Physics 27 (9):1221-1236.
    Thetranslation Chern-Simons type three-formcoframe∧torsion on a Riemann-Cartan spacetime is related (by differentiation) to the Nieh-Yan fourform. Following Chandia and Zanelli, two spaces with nontrivial translational Chern-Simons forms are discussed. We then demonstrate, first within the classical Einstein-Cartan-Dirac theory and second in the quantum heat kernel approach to the Dirac operator, how the Nieh-Yan form surfaces in both contexts, in contrast to what has been assumed previously.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  34.  47
    Theories of gravitation with nonminimal coupling of matter and the gravitational field.H. F. M. Goenner - 1984 - Foundations of Physics 14 (9):865-881.
    The foundations of a theory of nonminimal coupling of matter and the gravitational field in the framework of Riemannian (or Riemann-Cartan) geometry are presented. In the absence of matter, the Einstein vacuum field equations hold. In order to allow for a Newtonian limit, the theory contains a new parameter l0 of dimension length. For systems with finite total mass, l0 is set equal to the Schwarzschild radius.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Deleuze and the conceptualizable character of mathematical theories.Simon B. Duffy - 2017 - In Nathalie Sinclair & Alf Coles Elizabeth de Freitas (ed.), What is a Mathematical Concept? Cambridge University Press.
    To make sense of what Gilles Deleuze understands by a mathematical concept requires unpacking what he considers to be the conceptualizable character of a mathematical theory. For Deleuze, the mathematical problems to which theories are solutions retain their relevance to the theories not only as the conditions that govern their development, but also insofar as they can contribute to determining the conceptualizable character of those theories. Deleuze presents two examples of mathematical problems that operate in this way, which he considers (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36. Local and Non-Local Aspects of Quantum Gravity.H. -H. V. Borzeszkowski, B. K. Datta, V. De Sabbata, L. Ronchetti & H. -J. Treder - 2002 - Foundations of Physics 32 (11):1701-1716.
    The analysis of the measurement of gravitational fields leads to the Rosenfeld inequalities. They say that, as an implication of the equivalence of the inertial and passive gravitational masses of the test body, the metric cannot be attributed to an operator that is defined in the frame of a local canonical quantum field theory. This is true for any theory containing a metric, independently of the geometric framework under consideration and the way one introduces the metric in it. Thus, to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  41
    Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories.Friedrich W. Hehl & J. Dermott McCrea - 1986 - Foundations of Physics 16 (3):267-293.
    Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  38. Dogmas and the Changing Images of Foundations.José Ferreirós - 2005 - Philosophia Scientiae:27-42.
    I offer a critical review of several different conceptions of the activity of foundational research, from the time of Gauss to the present. These are (1) the traditional image, guiding Gauss, Dedekind, Frege and others, that sees in the search for more adequate basic systems a logical excavation of a priori structures, (2) the program to find sound formal systems for so-called classical mathematics that can be proved consistent, usually associated with the name of Hilbert, and (3) the historicist alternative, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  22
    Curved Space-Times by Crystallization of Liquid Fiber Bundles.Frédéric Hélein & Dimitri Vey - 2017 - Foundations of Physics 47 (1):1-41.
    Motivated by the search for a Hamiltonian formulation of Einstein equations of gravity which depends in a minimal way on choices of coordinates, nor on a choice of gauge, we develop a multisymplectic formulation on the total space of the principal bundle of orthonormal frames on the 4-dimensional space-time. This leads quite naturally to a new theory which takes place on 10-dimensional manifolds. The fields are pairs of \,\varpi )\), where \\) is a 1-form with coefficients in the Lie algebra (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  47
    From the Geometry of Pure Spinors with Their Division Algebras to Fermion Physics.Paolo Budinich - 2002 - Foundations of Physics 32 (9):1347-1398.
    The Cartan equations defining simple spinors (renamed “pure” by C. Chevalley) are interpreted as equations of motion in compact momentum spaces, in a constructive approach in which at each step the dimensions of spinor space are doubled while those of momentum space increased by two. The construction is possible only in the frame of the geometry of simple or pure spinors, which imposes contraint equations on spinors with more than four components, and then momentum spaces result compact, isomorphic to invariant-mass-spheres (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  51
    Formulation of Spinors in Terms of Gauge Fields.S. R. Vatsya - 2015 - Foundations of Physics 45 (2):142-157.
    It is shown in the present paper that the transformation relating a parallel transported vector in a Weyl space to the original one is the product of a multiplicative gauge transformation and a proper orthochronous Lorentz transformation. Such a Lorentz transformation admits a spinor representation, which is obtained and used to deduce the transportation properties of a Weyl spinor, which are then expressed in terms of a composite gauge group defined as the product of a multiplicative gauge group and the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  42.  73
    Wesson’s Induced Matter Theory with a Weylian Bulk.Mark Israelit - 2005 - Foundations of Physics 35 (10):1725-1748.
    The foundations of Wesson’s induced matter theory are analyzed. It is shown that the empty—without matter—5-dimensional bulk must be regarded as a Weylian space rather than as a Riemannian one. Revising the geometry of the bulk, we have assumed that a Weylian connection vector and a gauge function exist in addition to the metric tensor. The framework of a Weyl–Dirac version of Wesson’s theory is elaborated and discussed. In the 4-dimensional hypersurface (brane), one obtains equations describing both fields, the gravitational (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  43. Extension and Measurement: A Constructivist Program from Leibniz to Grassmann.Erik C. Banks - 2013 - Studies in History and Philosophy of Science Part A 44 (1):20-31.
    Extension is probably the most general natural property. Is it a fundamental property? Leibniz claimed the answer was no, and that the structureless intuition of extension concealed more fundamental properties and relations. This paper follows Leibniz's program through Herbart and Riemann to Grassmann and uses Grassmann's algebra of points to build up levels of extensions algebraically. Finally, the connection between extension and measurement is considered.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  44.  66
    Information, Quantum Mechanics, and Gravity.Robert Carroll - 2005 - Foundations of Physics 35 (1):131-154.
    This is a basically expository article, with some new observations, tracing connections of the quantum potential to Fisher information, to Kähler geometry of the projective Hilbert space of a quantum system, and to the Weyl-Ricci scalar curvature of a Riemannian flat spacetime with quantum matter.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  60
    Proof of the Spin–Statistics Theorem.Enrico Santamato & Francesco De Martini - 2015 - Foundations of Physics 45 (7):858-873.
    The traditional standard quantum mechanics theory is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle”. A complete and straightforward solution of the spin–statistics problem is presented on the basis of the “conformal quantum geometrodynamics” theory. This theory provides a Weyl-gauge invariant formulation of the standard quantum mechanics and reproduces successfully all relevant quantum processes including the formulation of Dirac’s or Schrödinger’s equation, of Heisenberg’s uncertainty relations and of the nonlocal EPR correlations. When the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  71
    Derivation of the Dirac Equation by Conformal Differential Geometry.Enrico Santamato & Francesco De Martini - 2013 - Foundations of Physics 43 (5):631-641.
    A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  36
    PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism.Philip D. Mannheim - 2017 - Foundations of Physics 47 (9):1229-1257.
    We present some interesting connections between PT symmetry and conformal symmetry. We use them to develop a metricated theory of electromagnetism in which the electromagnetic field is present in the geometric connection. However, unlike Weyl who first advanced this possibility, we do not take the connection to be real but to instead be PT symmetric, with it being \ rather than \ itself that then appears in the connection. With this modification the standard minimal coupling of electromagnetism to fermions (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48.  37
    Rapport sur les travaux philosophiques entrepris par M. Lautman.Albert Lautman - 2010 - Philosophiques 37 (1):9-15.
    Lautman synthétise dans ce rapport quelques idées centrales qui seront par la suite développées dans ses Thèses . Il s’agit d’un manuscrit inédit, qui semble être le premier texte scientifique du jeune philosophe. Lautman étudie le local et le global suivant Galois, Riemann, Hilbert et Cartan, et propose une hypothèse sur les rapports structurels généraux du local et du global, qui préfigure l’essor de la théorie des faisceaux, laquelle apparaîtra une dizaine d’années après.Lautman synthetizes some of the main ideas that (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  38
    Géométrie de l'espace-temps et nature de la physique: quelques réflexions histori­ques et épistémologiques.Luciano Boi - 2000 - Manuscrito 23 (1):31-97.
    Nous analysons le développement mathématique et la signification épistémologique du mouvement de géométrisation de la physique théorique, à partir des travaux fondamentaux d’E. Cartan et de H. Weyl jusqu’aux théories de jauge non-abéliennes récentes. Le principal propos de cet article est d'étudier ces développements qui ont été inspirés par les tentatives de résoudre l'un des problèmes centraux de la physique théorique au siècle dernier, c’est-à-dire comment arriver à concilier la relativité générale et la théorie quantique des champs dans un cadre (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The origins of the spacetime Metric: Bell’s Lorentzian Pedagogy and its significance in general relativity.Harvey R. Brown & Oliver Pooley - 2001 - In Craig Callender & Nick Huggett (eds.), Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity. Cambridge University Press. pp. 256--72.
    The purpose of this paper is to evaluate the `Lorentzian Pedagogy' defended by J.S. Bell in his essay ``How to teach special relativity'', and to explore its consistency with Einstein's thinking from 1905 to 1952. Some remarks are also made in this context on Weyl's philosophy of relativity and his 1918 gauge theory. Finally, it is argued that the Lorentzian pedagogy---which stresses the important connection between kinematics and dynamics---clarifies the role of rods and clocks in general relativity.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   47 citations  
1 — 50 / 967