Results for 'Soundness and completeness theorems'

979 found
Order:
  1.  25
    A completeness theorem for continuous predicate modal logic.Stefano Baratella - 2019 - Archive for Mathematical Logic 58 (1-2):183-201.
    We study a modal extension of the Continuous First-Order Logic of Ben Yaacov and Pedersen :168–190, 2010). We provide a set of axioms for such an extension. Deduction rules are just Modus Ponens and Necessitation. We prove that our system is sound with respect to a Kripke semantics and, building on Ben Yaacov and Pedersen, that it satisfies a number of properties similar to those of first-order predicate logic. Then, by means of a canonical model construction, we get that every (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  57
    On the way to a Wider model theory: Completeness theorems for first-order logics of formal inconsistency.Walter Carnielli, Marcelo E. Coniglio, Rodrigo Podiacki & Tarcísio Rodrigues - 2014 - Review of Symbolic Logic 7 (3):548-578.
    This paper investigates the question of characterizing first-order LFIs (logics of formal inconsistency) by means of two-valued semantics. LFIs are powerful paraconsistent logics that encode classical logic and permit a finer distinction between contradictions and inconsistencies, with a deep involvement in philosophical and foundational questions. Although focused on just one particular case, namely, the quantified logic QmbC, the method proposed here is completely general for this kind of logics, and can be easily extended to a large family of quantified paraconsistent (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  3.  2
    Completeness of Infinitary Heterogeneous Logic.Christian Espíndola - 2025 - Notre Dame Journal of Formal Logic 66 (1):1-17.
    Given a regular cardinal κ such that κ<κ=κ (e.g., if the generalized continuum hypothesis holds), we develop a proof system for classical infinitary logic that includes heterogeneous quantification (i.e., infinite alternating sequences of quantifiers) within the language Lκ+,κ, where there are conjunctions and disjunctions of at most κ many formulas and quantification (including the heterogeneous one) is applied to less than κ many variables. This type of quantification is interpreted in Set using the usual second-order formulation in terms of strategies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  47
    Completeness of indexed varepsilon -calculus.G. E. Mints & Darko Sarenac - 2003 - Archive for Mathematical Logic 42 (7):617--625.
    Epsilon terms indexed by contexts were used by K. von Heusinger to represent definite and indefinite noun phrases as well as some other constructs of natural language. We provide a language and a complete first order system allowing to formalize basic aspects of this representation. The main axiom says that for any finite collection S 1,…,S k of distinct definable sets and elements a 1,…,a k of these sets there exists a choice function assigning a i to S i for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  5.  91
    Solovay-Type Theorems for Circular Definitions.Shawn Standefer - 2015 - Review of Symbolic Logic 8 (3):467-487.
    We present an extension of the basic revision theory of circular definitions with a unary operator, □. We present a Fitch-style proof system that is sound and complete with respect to the extended semantics. The logic of the box gives rise to a simple modal logic, and we relate provability in the extended proof system to this modal logic via a completeness theorem, using interpretations over circular definitions, analogous to Solovay’s completeness theorem forGLusing arithmetical interpretations. We adapt our (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  6.  25
    A completeness result for a realisability semantics for an intersection type system.Fairouz Kamareddine & Karim Nour - 2007 - Annals of Pure and Applied Logic 146 (2):180-198.
    In this paper we consider a type system with a universal type $omega$ where any term (whether open or closed, $beta$-normalising or not) has type $omega$. We provide this type system with a realisability semantics where an atomic type is interpreted as the set of $lambda$-terms saturated by a certain relation. The variation of the saturation relation gives a number of interpretations to each type. We show the soundness and completeness of our semantics and that for different notions (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Strong Soundness-Completeness Theorem: a semantic approach.José Alfredo Amor - 2009 - Teorema: International Journal of Philosophy 28 (3):173-190.
  8. Logical Consequence and First-Order Soundness and Completeness: A Bottom Up Approach.Eli Dresner - 2011 - Notre Dame Journal of Formal Logic 52 (1):75-93.
    What is the philosophical significance of the soundness and completeness theorems for first-order logic? In the first section of this paper I raise this question, which is closely tied to current debate over the nature of logical consequence. Following many contemporary authors' dissatisfaction with the view that these theorems ground deductive validity in model-theoretic validity, I turn to measurement theory as a source for an alternative view. For this purpose I present in the second section several (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  62
    Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz’ Ecumenical System.Luiz Carlos Pereira & Ricardo Oscar Rodriguez - 2017 - Revista Portuguesa de Filosofia 73 (3-4):1153-1168.
    In 2015 Dag Prawitz proposed an Ecumenical system where classical and intuitionistic logic could coexist in peace. The classical logician and the intuitionistic logician would share the universal quantifier, conjunction, negation and the constant for the absurd, but they would each have their own existential quantifier, disjunction and implication, with different meanings. Prawitz’ main idea is that these different meanings are given by a semantical framework that can be accepted by both parties. The aim of the present paper is [1] (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  10.  33
    An Escape From Vardanyan’s Theorem.Ana de Almeida Borges & Joost J. Joosten - 2023 - Journal of Symbolic Logic 88 (4):1613-1638.
    Vardanyan’s Theorems [36, 37] state that $\mathsf {QPL}(\mathsf {PA})$ —the quantified provability logic of Peano Arithmetic—is $\Pi ^0_2$ complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The system (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  57
    Completeness theorems, representation theorems: what's the difference?David C. Makinson - unknown - Hommage À Wlodek: Philosophical Papers Dedicated to Wlodek Rabinowicz, Ed. Rønnow-Rasmussen Et Al. 2007.
    A discussion of the connections and differences between completeness and representation theorems in logic, with examples drawn from classical and modal logic, the logic of friendliness, and nonmonotonic reasoning.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  30
    Arithmetical Completeness Theorem for Modal Logic mathsfmathsf{}.Taishi Kurahashi - 2018 - Studia Logica 106 (2):219-235.
    We prove that for any recursively axiomatized consistent extension T of Peano Arithmetic, there exists a \ provability predicate of T whose provability logic is precisely the modal logic \. For this purpose, we introduce a new bimodal logic \, and prove the Kripke completeness theorem and the uniform arithmetical completeness theorem for \.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  13.  36
    Effective completeness theorems for modal logic.Suman Ganguli & Anil Nerode - 2004 - Annals of Pure and Applied Logic 128 (1-3):141-195.
    We initiate the study of computable model theory of modal logic, by proving effective completeness theorems for a variety of first-order modal logics. We formulate a natural definition of a decidable Kripke model, and show how to construct such a decidable Kripke model of a given decidable theory. Our construction is inspired by the effective Henkin construction for classical logic. The Henkin construction, however, depends in an essential way on the Deduction Theorem. In its usual form the Deduction (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  14.  77
    Strong Completeness Theorems for Weak Logics of Common Belief.Lismont Luc & Mongin Philippe - 2003 - Journal of Philosophical Logic 32 (2):115-137.
    We show that several logics of common belief and common knowledge are not only complete, but also strongly complete, hence compact. These logics involve a weakened monotonicity axiom, and no other restriction on individual belief. The semantics is of the ordinary fixed-point type.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  15. A completeness theorem for higher order logics.Gabor Sagi - 2000 - Journal of Symbolic Logic 65 (2):857-884.
    Here we investigate the classes RCA $^\uparrow_\alpha$ of representable directed cylindric algebras of dimension α introduced by Nemeti[12]. RCA $^\uparrow_\alpha$ can be seen in two different ways: first, as an algebraic counterpart of higher order logics and second, as a cylindric algebraic analogue of Quasi-Projective Relation Algebras. We will give a new, "purely cylindric algebraic" proof for the following theorems of Nemeti: (i) RCA $^\uparrow_\alpha$ is a finitely axiomatizable variety whenever α ≥ 3 is finite and (ii) one can (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  16.  53
    A completeness theorem for unrestricted first- order languages.Agustin Rayo & Timothy Williamson - 2003 - In J. C. Beall, Liars and Heaps: New Essays on Paradox. Oxford, England: Oxford University Press UK. pp. 331-356.
    Here is an account of logical consequence inspired by Bolzano and Tarski. Logical validity is a property of arguments. An argument is a pair of a set of interpreted sentences (the premises) and an interpreted sentence (the conclusion). Whether an argument is logically valid depends only on its logical form. The logical form of an argument is fixed by the syntax of its constituent sentences, the meanings of their logical constituents and the syntactic differences between their non-logical constituents, treated as (...)
    Direct download  
     
    Export citation  
     
    Bookmark   28 citations  
  17.  31
    Completeness theorem for propositional probabilistic models whose measures have only finite ranges.Radosav Dordević, Miodrag Rašković & Zoran Ognjanović - 2004 - Archive for Mathematical Logic 43 (4):557-563.
    A propositional logic is defined which in addition to propositional language contains a list of probabilistic operators of the form P ≥s (with the intended meaning ‘‘the probability is at least s’’). The axioms and rules syntactically determine that ranges of probabilities in the corresponding models are always finite. The completeness theorem is proved. It is shown that completeness cannot be generalized to arbitrary theories.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  21
    The Completeness Theorem? So What!Göran Sundholm - 2024 - In Antonio Piccolomini D'Aragona, Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction. Springer Verlag. pp. 39-50.
    Bolzano reduced inferential validity of the inference (from premise judgements to conclusion judgment) to the holding of logical consequence between the propositions (in themselves) that serve as contents of the respective judgements. This explicit reduction of inferential validity among judgements to logical consequence among propositions (or, alternatively, to logical truth of certain implicational propositions) has been largely taken over by current logical theory, say, by Wittgenstein’s Tractatus, by Hilbert and Ackermann, by Quine, and by Tarski also. Frege, though, stands out (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  19. A completeness theorem for unrestricted first- order languages.Agustin Rayo & Timothy Williamson - 2003 - In J. C. Beall, Liars and Heaps: New Essays on Paradox. Oxford, England: Oxford University Press UK.
    Here is an account of logical consequence inspired by Bolzano and Tarski. Logical validity is a property of arguments. An argument is a pair of a set of interpreted sentences (the premises) and an interpreted sentence (the conclusion). Whether an argument is logically valid depends only on its logical form. The logical form of an argument is fixed by the syntax of its constituent sentences, the meanings of their logical constituents and the syntactic differences between their non-logical constituents, treated as (...)
    Direct download  
     
    Export citation  
     
    Bookmark   29 citations  
  20.  33
    Completeness theorem for topological class models.Radosav Djordjevic, Nebojša Ikodinović & Žarko Mijajlović - 2007 - Archive for Mathematical Logic 46 (1):1-8.
    A topological class logic is an infinitary logic formed by combining a first-order logic with the quantifier symbols O and C. The meaning of a formula closed by quantifier O is that the set defined by the formula is open. Similarly, a formula closed by quantifier C means that the set is closed. The corresponding models are a topological class spaces introduced by Ćirić and Mijajlović (Math Bakanica 1990). The completeness theorem is proved.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  56
    Completeness theorems for σ–additive probabilistic semantics.Nebojša Ikodinović, Zoran Ognjanović, Aleksandar Perović & Miodrag Rašković - 2020 - Annals of Pure and Applied Logic 171 (4):102755.
  22.  24
    (1 other version)Analytic completeness theorem for absolutely continuous biprobability models.Radosav S. Đorđević - 1992 - Mathematical Logic Quarterly 38 (1):241-246.
    Hoover [2] proved a completeness theorem for the logic L[MATHEMATICAL SCRIPT CAPITAL A]. The aim of this paper is to prove a similar completeness theorem with respect to product measurable biprobability models for a logic Lmath image with two integral operators. We prove: If T is a ∑1 definable theory on [MATHEMATICAL SCRIPT CAPITAL A] and consistent with the axioms of Lmath image, then there is an analytic absolutely continuous biprobability model in which every sentence in T is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  37
    Completeness theorems for \exists \Box -bundled fragment of first-order modal logic.Xun Wang - 2023 - Synthese 201 (4):1-23.
    This paper expands upon the work by Wang (Proceedings of TARK, pp. 493–512, 2017) who proposes a new framework based on quantifier-free predicate language extended by a new bundled modality x\exists x\Box and axiomatizes the logic over S5 frames. This paper first gives complete axiomatizations of the logics over K, D, T, 4, S4 frames with increasing domains and constant domains, respectively. The systems w.r.t. constant domains feature infinitely many additional rules defined inductively than systems w.r.t. increasing domains. In (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  50
    A completeness theorem for open maps.A. Joyal & I. Moerdijk - 1994 - Annals of Pure and Applied Logic 70 (1):51-86.
    This paper provides a partial solution to the completeness problem for Joyal's axiomatization of open and etale maps, under the additional assumption that a collection axiom holds.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25.  52
    A probabilistic temporal epistemic logic: Strong completeness.Zoran Ognjanović, Angelina Ilić Stepić & Aleksandar Perović - 2024 - Logic Journal of the IGPL 32 (1):94-138.
    The paper offers a formalization of reasoning about distributed multi-agent systems. The presented propositional probabilistic temporal epistemic logic $\textbf {PTEL}$ is developed in full detail: syntax, semantics, soundness and strong completeness theorems. As an example, we prove consistency of the blockchain protocol with respect to the given set of axioms expressed in the formal language of the logic. We explain how to extend $\textbf {PTEL}$ to axiomatize the corresponding first-order logic.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Some completeness theorems in the dynamic doxastic logic of iterated belief revision.Krister Segerberg - 2010 - Review of Symbolic Logic 3 (2):228-246.
    The success of the AGM paradigmn, Gis remarkable, as even a quick look at the literature it has generated will testify. But it is also remarkable, at least in hindsight, how limited was the original effort. For example, the theory concerns the beliefs of just one agent; all incoming information is accepted; belief change is uniquely determined by the new information; there is no provision for nested beliefs. And perhaps most surprising: there is no analysis of iterated change.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27.  23
    Arithmetical completeness theorems for monotonic modal logics.Haruka Kogure & Taishi Kurahashi - 2023 - Annals of Pure and Applied Logic 174 (7):103271.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  78
    Completeness theorems via the double dual functor.Adriana Galli, Marta Sagastume & Gonzalo E. Reyes - 2000 - Studia Logica 64 (1):61-81.
    The aim of this paper is to apply properties of the double dual endofunctor on the category of bounded distributive lattices and some extensions thereof to obtain completeness of certain non-classical propositional logics in a unified way. In particular, we obtain completeness theorems for Moisil calculus, n-valued Łukasiewicz calculus and Nelson calculus. Furthermore we show some conservativeness results by these methods.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  21
    On Equational Completeness Theorems.Tommaso Moraschini - 2022 - Journal of Symbolic Logic 87 (4):1522-1575.
    A logic is said to admit an equational completeness theorem when it can be interpreted into the equational consequence relative to some class of algebras. We characterize logics admitting an equational completeness theorem that are either locally tabular or have some tautology. In particular, it is shown that a protoalgebraic logic admits an equational completeness theorem precisely when it has two distinct logically equivalent formulas. While the problem of determining whether a logic admits an equational completeness (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  24
    A Completeness Theorem for Certain Classes of Recursive Infinitary Formulas.Christopher J. Ash & Julia F. Knight - 1994 - Mathematical Logic Quarterly 40 (2):173-181.
    We consider the following generalization of the notion of a structure recursive relative to a set X. A relational structure A is said to be a Γ-structure if for each relation symbol R, the interpretation of R in A is ∑math image relative to X, where β = Γ. We show that a certain, fairly obvious, description of classes ∑math image of recursive infinitary formulas has the property that if A is a Γ-structure and S is a further relation on (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  48
    On the proof of Solovay's theorem.Dick de Jongh, Marc Jumelet & Franco Montagna - 1991 - Studia Logica 50 (1):51-69.
    Solovay's 1976 completeness result for modal provability logic employs the recursion theorem in its proof. It is shown that the uses of the recursion theorem can in this proof replaced by the diagonalization lemma for arithmetic and that, in effect, the proof neatly fits the framework of another, enriched, system of modal logic so that any arithmetical system for which this logic is sound is strong enough to carry out the proof, in particular $\text{I}\Delta _{0}+\text{EXP}$ . The method is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  32.  49
    An Intuitionistic Completeness Theorem for Classical Predicate Logic.Victor N. Krivtsov - 2010 - Studia Logica 96 (1):109-115.
    This paper presents an intuitionistic proof of a statement which under a classical reading is logically equivalent to Gödel's completeness theorem for classical predicate logic.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  40
    Completeness theorems for two propositional logics in which identity diverges from mutual entailment.Philip Hugly & Charles Sayward - 1981 - Notre Dame Journal of Formal Logic 22 (3):269-282.
    Anderson and Belnap devise a model theory for entailment on which propositional identity equals proposional coentailment. This feature can be reasonably questioned. The authors devise two extensions of Anderson and Belnap’s model theory. Both systems preserve Anderson and Belnap’s results for entailment, but distinguish coentailment from identity.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  34.  73
    On the proof of Solovay's theorem.Dick Jongh, Marc Jumelet & Franco Montagna - 1991 - Studia Logica 50 (1):51 - 69.
    Solovay's 1976 completeness result for modal provability logic employs the recursion theorem in its proof. It is shown that the uses of the recursion theorem can in this proof be replaced by the diagonalization lemma for arithmetic and that, in effect, the proof neatly fits the framework of another, enriched, system of modal logic (the so-called Rosser logic of Gauspari-Solovay, 1979) so that any arithmetical system for which this logic is sound is strong enough to carry out the proof, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  35. A unified completeness theorem for quantified modal logics.Giovanna Corsi - 2002 - Journal of Symbolic Logic 67 (4):1483-1510.
    A general strategy for proving completeness theorems for quantified modal logics is provided. Starting from free quantified modal logic K, with or without identity, extensions obtained either by adding the principle of universal instantiation or the converse of the Barcan formula or the Barcan formula are considered and proved complete in a uniform way. Completeness theorems are also shown for systems with the extended Barcan rule as well as for some quantified extensions of the modal logic (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  36.  36
    A Strong Completeness Theorem for the Gentzen systems associated with finite algebras.Àngel J. Gil, Jordi Rebagliato & Ventura Verdú - 1999 - Journal of Applied Non-Classical Logics 9 (1):9-36.
    ABSTRACT In this paper we study consequence relations on the set of many sided sequents over a propositional language. We deal with the consequence relations axiomatized by the sequent calculi defined in [2] and associated with arbitrary finite algebras. These consequence relations are examples of what we call Gentzen systems. We define a semantics for these systems and prove a Strong Completeness Theorem, which is an extension of the Completeness Theorem for provable sequents stated in [2]. For the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  59
    A topological completeness theorem.Carsten Butz - 1999 - Archive for Mathematical Logic 38 (2):79-101.
    We prove a topological completeness theorem for infinitary geometric theories with respect to sheaf models. The theorem extends a classical result of Makkai and Reyes, stating that any topos with enough points has an open spatial cover. We show that one can achieve in addition that the cover is connected and locally connected.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  12
    Completeness Theorems for ∃□\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\exists \Box \end{document}-Fragment of First-Order Modal Logic. [REVIEW]Xun Wang - 2021 - In Sujata Ghosh & Thomas Icard, Logic, Rationality, and Interaction: 8th International Workshop, Lori 2021, Xi’an, China, October 16–18, 2021, Proceedings. Springer Verlag. pp. 246-258.
    The paper expands upon the work by Wang [4], who proposes a new framework based on quantifier-free predicate language extended by a new modality ∃x□\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}x\exists x\Box \end{document} and axiomatizes the logic over S5 frames. This paper gives the logics over K, D, T, 4, S4 frames with increasing and constant domains. And we provide a general strategy for proving completeness theorems for logics w.r.t. the increasing domain and logics w.r.t. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  9
    Strong standard completeness theorems for S5-modal Łukasiewicz logics.Diego Castaño, José Patricio Díaz Varela & Gabriel Savoy - 2025 - Annals of Pure and Applied Logic 176 (3):103529.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  24
    A topological completeness theorem for transfinite provability logic.Juan P. Aguilera - 2023 - Archive for Mathematical Logic 62 (5):751-788.
    We prove a topological completeness theorem for the modal logic GLP\textsf{GLP} GLP containing operators {ξ:ξOrd}\{\langle \xi \rangle :\xi \in \textsf{Ord}\} { ⟨ ξ ⟩ : ξ ∈ Ord } intended to capture a wellordered sequence of consistency operators increasing in strength. More specifically, we prove that, given a tall-enough scattered space X, any sentence ϕ\phi ϕ consistent with GLP\textsf{GLP} GLP can be satisfied on a polytopological space based on finitely many Icard topologies constructed over X and corresponding to (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  40
    An analytic completeness theorem for logics with probability quantifiers.Douglas N. Hoover - 1987 - Journal of Symbolic Logic 52 (3):802-816.
    We give a completeness theorem for a logic with probability quantifiers which is equivalent to the logics described in a recent survey paper of Keisler [K]. This result improves on the completeness theorems in [K] in that it works for languages with function symbols and produces a model whose universe is an analytic subset of the real line, and whose relations and functions are Borel relative to this universe.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  42.  49
    A Completeness Theorem For Symmetric Product Phase Spaces.Thomas Ehrhard - 2004 - Journal of Symbolic Logic 69 (2):340-370.
    In a previous work with Antonio Bucciarelli, we introduced indexed linear logic as a tool for studying and enlarging the denotational semantics of linear logic. In particular, we showed how to define new denotational models of linear logic using symmetric product phase models of indexed linear logic. We present here a strict extension of indexed linear logic for which symmetric product phase spaces provide a complete semantics. We study the connection between this new system and indexed linear logic.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  43. The Church-Turing ‘Thesis’ as a Special Corollary of Gödel’s Completeness Theorem.Saul A. Kripke - 2013 - In B. J. Copeland, C. Posy & O. Shagrir, Computability: Gödel, Turing, Church, and beyond. MIT Press.
    Traditionally, many writers, following Kleene (1952), thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing’s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis, what Turing (1936) calls “argument I,” has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  44.  43
    On Models Constructed by Means of the Arithmetized Completeness Theorem.Richard Kaye & Henryk Kotlarski - 2000 - Mathematical Logic Quarterly 46 (4):505-516.
    In this paper we study the model theory of extensions of models of first-order Peano Arithmetic by means of the arithmetized completeness theorem applied to a definable complete extension of PA in the original model. This leads us to many interesting model theoretic properties equivalent to reflection principles and ω-consistency, and these properties together with the associated first-order schemes extending PA are studied.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  34
    Infinitary generalizations of deligne’s completeness theorem.Christian Espíndola - 2020 - Journal of Symbolic Logic 85 (3):1147-1162.
    Given a regular cardinal $\kappa $ such that $\kappa ^{<\kappa }=\kappa $, we study a class of toposes with enough points, the $\kappa $ -separable toposes. These are equivalent to sheaf toposes over a site with $\kappa $ -small limits that has at most $\kappa $ many objects and morphisms, the topology being generated by at most $\kappa $ many covering families, and that satisfy a further exactness property T. We prove that these toposes have enough $\kappa $ -points, that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Algebraizing A→.Sam Butchart & Susan Rogerson - unknown
    Abelian Logic is a paraconsistent logic discovered independently by Meyer and Slaney [10] and Casari [2]. This logic is also referred to as Abelian Group Logic (AGL) [12] since its set of theorems is sound and complete with respect to the class of Abelian groups. In this paper we investigate the pure implication fragment A→ of Abelian logic. This is an extension of the implication fragment of linear logic, BCI. A Hilbert style axiomatic system for A→ can obtained by (...)
     
    Export citation  
     
    Bookmark  
  47. Resolution for Intuitionistic Logic.Melvin Fitting - unknown
    Most automated theorem provers have been built around some version of resolution [4]. But resolution is an inherently Classical logic technique. Attempts to extend the method to other logics have tended to obscure its simplicity. In this paper we present a resolution style theorem prover for Intuitionistic logic that, we believe, retains many of the attractive features of Classical resolution. It is, of course, more complicated, but the complications can be given intuitive motivation. We note that a small change in (...)
     
    Export citation  
     
    Bookmark   1 citation  
  48.  48
    Syllogistic Logic with Cardinality Comparisons, on Infinite Sets.Lawrence S. Moss & Selçuk Topal - 2020 - Review of Symbolic Logic 13 (1):1-22.
    This article enlarges classical syllogistic logic with assertions having to do with comparisons between the sizes of sets. So it concerns a logical system whose sentences are of the following forms: Allxareyand Somexarey, There are at least as manyxasy, and There are morexthany. Herexandyrange over subsets (not elements) of a giveninfiniteset. Moreover,xandymay appear complemented (i.e., as$\bar{x}$and$\bar{y}$), with the natural meaning. We formulate a logic for our language that is based on the classical syllogistic. The main result is a soundness/ (...) theorem. There are efficient algorithms for proof search and model construction. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics.Arnon Avron, Jonathan Ben-Naim & Beata Konikowska - 2007 - Logica Universalis 1 (1):41-70.
    . The paper presents a method for transforming a given sound and complete n-sequent proof system into an equivalent sound and complete system of ordinary sequents. The method is applicable to a large, central class of (generalized) finite-valued logics with the language satisfying a certain minimal expressiveness condition. The expressiveness condition decrees that the truth-value of any formula φ must be identifiable by determining whether certain formulas uniformly constructed from φ have designated values or not. The transformation preserves the general (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  50.  18
    Deriving Information from Inconsistent Knowledge Bases: A Completeness Theorem for η▹η.Jeff Paris - 2004 - Logic Journal of the IGPL 12 (5):345-353.
    The logical consequence relations η▹η provide a very attractive way of inferring new facts from inconsistent knowledge bases without compromising standards of credibility. In this short note we provide proof theories and completeness theorems for these consequence relations which may have some applicability in small examples.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 979