Results for 'logicism, intuitionism, Frege, Dehaene, arithmetical cognition'

959 found
Order:
  1.  42
    (1 other version)The geometrical basis of arithmetical knowledge: Frege & Dehaene.Sorin Costreie - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):361-370.
    Frege writes in Numbers and Arithmetic about kindergarten-numbers and “an a priori mode of cognition” that they may have “a geometrical source.” This resembles recent findings on arithmetical cognition. In my paper, I explore this resemblance between Gottlob Frege’s later position concerning the geometrical source of arithmetical knowledge, and some current positions in the literature dedicated to arithmetical cognition, especially that of Stanislas Dehaene. In my analysis, I shall try to mainly see to what (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  50
    Husserl Between Frege’s Logicism And Hilbert’s Formalism.Ulrich Majer - 2009 - In Baltic International Yearbook of Cognition, Logic and Communication. pp. 1-21.
    The traditional view regarding the philosophy of mathematics in the twentieth century is the dogma of three schools: Logicism, Intuitionism and Formalism. The problem with this dogma is not, at least not first and foremost, that it is wrong, but that it is biased and essentially incomplete. 'Biased' because it was formulated by one of the involved parties, namely the logical empiricists - if I see it right - in order to make their own position look more agreeable with Intuitionism (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  98
    Stefano Donati. I fondamenti Della matematica Nel logicismo di Bertrand Russell [the foundations of mathematics in the logicism of Bertrand Russell].Gianluigi Oliveri - 2009 - Philosophia Mathematica 17 (1):109-113.
    Bertrand Russell's contributions to last century's philosophy and, in particular, to the philosophy of mathematics cannot be overestimated.Russell, besides being, with Frege and G.E. Moore, one of the founding fathers of analytical philosophy, played a major rôle in the development of logicism, one of the oldest and most resilient1 programmes in the foundations of mathematics.Among his many achievements, we need to mention the discovery of the paradox that bears his name and the identification of its logical nature; the generalization to (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  5.  48
    Erkenntnistheorie der zahldefinition und philosophische grundlegung der arithmetik unter bezugnahme auf einen vergleich Von Gottlob freges logizismus und platonischer philosophie (syrian, theon Von smyrna U.A.).Markus Schmitz - 2001 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 32 (2):271-305.
    The epistomology of the definition of number and the philosophical foundation of arithmetic based on a comparison between Gottlob Frege's logicism and Platonic philosophy (Syrianus, Theo Smyrnaeus, and others). The intention of this article is to provide arithmetic with a logically and methodologically valid definition of number for construing a consistent philosophical foundation of arithmetic. The – surely astonishing – main thesis is that instead of the modern and contemporary attempts, especially in Gottlob Frege's Foundations of Arithmetic, such a definition (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  6.  16
    What structuralism could not be.Stephen Ferguson - 1998 - Dissertation, St. Andrews
    Frege's arithmetical-platonism is glossed as the first step in developing the thesis; however, it remains silent on the subject of structures in mathematics: the obvious examples being groups and rings, lattices and topologies. The structuralist objects to this silence, also questioning the sufficiency of Fregean platonism is answering a number of problems: e.g. Benacerraf's Twin Puzzles of Epistemic and Referential Access. The development of structuralism as a philosophical position, based on the slogan 'All mathematics is structural' collapses: there is (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  7. Frege's context principle and reference to natural numbers.Øystein Linnebo - 2008 - In Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.), logicism, intuitionism, and formalism - What has become of them? Berlin, Germany: Springer.
    Frege proposed that his Context Principle—which says that a word has meaning only in the context of a proposition—can be used to explain reference, both in general and to mathematical objects in particular. I develop a version of this proposal and outline answers to some important challenges that the resulting account of reference faces. Then I show how this account can be applied to arithmetic to yield an explanation of our reference to the natural numbers and of their metaphysical status.
     
    Export citation  
     
    Bookmark   6 citations  
  8. Arithmetic, Logicism, and Frege’s Definitions.Timothy Perrine - 2021 - International Philosophical Quarterly 61 (1):5-25.
    This paper describes both an exegetical puzzle that lies at the heart of Frege’s writings—how to reconcile his logicism with his definitions and claims about his definitions—and two interpretations that try to resolve that puzzle, what I call the “explicative interpretation” and the “analysis interpretation.” This paper defends the explicative interpretation primarily by criticizing the most careful and sophisticated defenses of the analysis interpretation, those given my Michael Dummett and Patricia Blanchette. Specifically, I argue that Frege’s text either are inconsistent (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  9. logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10. The basic laws of arithmetic.Gottlob Frege - 1893 - Berkeley,: University of California Press. Edited by Montgomery Furth.
    ... as 'logicism') that the content expressed by true propositions of arithmetic and analysis is not something of an irreducibly mathematical character, ...
    Direct download  
     
    Export citation  
     
    Bookmark   138 citations  
  11.  70
    Author's response: Is number sense a patchwork?Stanislas Dehaene - 2001 - Mind and Language 16 (1):89–100.
    ‘Number sense’ is a short‐hand for our ability to quickly understand, approximate, and manipulate numerical quantities. My hypothesis is that number sense rests on cerebral circuits that have evolved specifically for the purpose of representing basic arithmetic knowledge. Four lines of evidence suggesting that number sense constitutes a domain‐specific, biologically‐determined ability are reviewed: the presence of evolutionary precursors of arithmetic in animals; the early emergence of arithmetic competence in infants independently of other abilities, including language; the existence of a homology (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  85
    The Logicism of Frege, Dedekind, and Russell.William Demopoulos & Peter Clark - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 129--165.
    The common thread running through the logicism of Frege, Dedekind, and Russell is their opposition to the Kantian thesis that our knowledge of arithmetic rests on spatio-temporal intuition. Our critical exposition of the view proceeds by tracing its answers to three fundamental questions: What is the basis for our knowledge of the infinity of the numbers? How is arithmetic applicable to reality? Why is reasoning by induction justified?
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  13. Précis of the number sense.Stanislas Dehaene - 2001 - Mind and Language 16 (1):16–36.
    ‘Number sense’ is a short‐hand for our ability to quickly understand, approximate, and manipulate numerical quantities. My hypothesis is that number sense rests on cerebral circuits that have evolved specifically for the purpose of representing basic arithmetic knowledge. Four lines of evidence suggesting that number sense constitutes a domain‐specific, biologically‐determined ability are reviewed: the presence of evolutionary precursors of arithmetic in animals; the early emergence of arithmetic competence in infants independently of other abilities, including language; the existence of a homology (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  14.  33
    Author’s Response: Is Number Sense a Patchwork?Stanislas Dehaene - 2002 - Mind and Language 16 (1):89-100.
    ‘Number sense’ is a short‐hand for our ability to quickly understand, approximate, and manipulate numerical quantities. My hypothesis is that number sense rests on cerebral circuits that have evolved specifically for the purpose of representing basic arithmetic knowledge. Four lines of evidence suggesting that number sense constitutes a domain‐specific, biologically‐determined ability are reviewed: the presence of evolutionary precursors of arithmetic in animals; the early emergence of arithmetic competence in infants independently of other abilities, including language; the existence of a homology (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   19 citations  
  15. Eye gaze reveals a fast, parallel extraction of the syntax of arithmetic formulas.Elisa Schneider, Masaki Maruyama, Stanislas Dehaene & Mariano Sigman - 2012 - Cognition 125 (3):475-490.
  16. Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than (...)
    Direct download  
     
    Export citation  
     
    Bookmark   182 citations  
  17.  13
    Was Frege a Logicist for Arithmetic?Marco Panza - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 87-112.
    The paper argues that Frege’s primary foundational purpose concerning arithmetic was neither that of making natural numbers logical objects, nor that of making arithmetic a part of logic, but rather that of assigning to it an appropriate place in the architectonics of mathematics and knowledge, by immersing it in a theory of numbers of concepts and making truths about natural numbers, and/or knowledge of them transparent to reason without the medium of senses and intuition.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  68
    Kant Versus Frege on Arithmetic.Nora Grigore - 2022 - Axiomathes 32 (2):263-281.
    Kant's claim that arithmetical truths are synthetic is famously contradicted by Frege, who considers them to be analytical. It may seem that this is a mere dispute about linguistic labels, since both Kant and Frege agree that arithmetical truths are a priori and informative, and, therefore, it is only a matter of how one chooses to call them. I argue that the choice between calling arithmetic “synthetic” or “analytic” has a deeper significance. I claim that the dispute is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  89
    Non-symbolic arithmetic in adults and young children.Hilary Barth, Kristen La Mont, Jennifer Lipton, Stanislas Dehaene, Nancy Kanwisher & Elizabeth Spelke - 2006 - Cognition 98 (3):199-222.
  20.  20
    Logic as Science.Robert May - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 113-160.
    Frege’s logicist program is a program of scientific unification of arithmetic and logic via the reduction of arithmetic to logic. Logic on this view is the prior science, indeed, the most fundamental of all sciences. The coherence of this picture has been questioned, based on the claim that the Basic Laws of logic are not justifiable as judgements. That Frege’s conception of logic suffers from this fatal flaw is incorrect, and in this paper I explore why. The discussion has three (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  21. The chimera of logicism: Husserl's criticism of Frege.Mirja Helena Hartimo - 2021 - In Francesca Boccuni & Andrea Sereni (eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism. Routledge. pp. 197-214.
    The paper discusses Husserl’s criticism of Frege in Philosophy of Arithmetic (1891) and then his later attitude towards logicism as expressed in Logical Investigations (1900-01). In Philosophy of Arithmetic Husserl holds that logicists offer needless and artificial definitions of notions such as equivalence and number. Frege criticized Husserl’s approach in Philosophy of Arithmetic as psychological, thus shifting the focus of the debate away from logicism. However, Frege’s criticism could be seen to lead Husserl to his later transcendental phenomenological concept of (...)
     
    Export citation  
     
    Bookmark  
  22. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  23. "Cała matematyka to właściwie geometria". Poglądy Gottloba Fregego na podstawy matematyki po upadku logicyzmu.Krystian Bogucki - 2019 - Hybris. Internetowy Magazyn Filozoficzny 44:1 - 20.
    Gottlob Frege abandoned his logicist program after Bertrand Russell had discovered that some assumptions of Frege’s system lead to contradiction (so called Russell’s paradox). Nevertheless, he proposed a new attempt for the foundations of mathematics in two last years of his life. According to this new program, the whole of mathematics is based on the geometrical source of knowledge. By the geometrical source of cognition Frege meant intuition which is the source of an infinite number of objects in arithmetic. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Frege's unofficial arithmetic.Agustín Rayo - 2002 - Journal of Symbolic Logic 67 (4):1623-1638.
    I show that any sentence of nth-order (pure or applied) arithmetic can be expressed with no loss of compositionality as a second-order sentence containing no arithmetical vocabulary, and use this result to prove a completeness theorem for applied arithmetic. More specifically, I set forth an enriched second-order language L, a sentence A of L (which is true on the intended interpretation of L), and a compositionally recursive transformation Tr defined on formulas of L, and show that they have the (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  25. (1 other version)Frege's Other Program.Aldo Antonelli & Robert May - 2005 - Notre Dame Journal of Formal Logic 46 (1):1-17.
    Frege's logicist program requires that arithmetic be reduced to logic. Such a program has recently been revamped by the "neologicist" approach of Hale and Wright. Less attention has been given to Frege's extensionalist program, according to which arithmetic is to be reconstructed in terms of a theory of extensions of concepts. This paper deals just with such a theory. We present a system of second-order logic augmented with a predicate representing the fact that an object x is the extension of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  26. Logicism, Formalism, and Intuitionism.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    This paper objectively defines the three main contemporary philosophies of mathematics: formalism, logicism, and intuitionism. Being the three leading scientists of each: Hilbert (formalist), Frege (logicist), and Poincaré (intuitionist).
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   123 citations  
  28.  29
    Frege, natural numbers, and arithmetic's umbilical cord.Erich Reck - 2003 - Manuscrito 26 (2):427-70.
    A central part of Frege's logicism is his reconstruction of the natural numbers as equivalence classes of equinumerous concepts or classes. In this paper, I examine the relationship of this reconstruction both to earlier views, from Mill all the way back to Plato, and to later formalist and structuralist views; I thus situate Frege within what may be called the “rise of pure mathematics” in the nineteenth century. Doing so allows us to acknowledge continuities between Frege's and other approaches, but (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  42
    Frege, Neo-Logicism and Applied Mathematics.Peter Clark - 2004 - Vienna Circle Institute Yearbook 11:169-183.
    A little over one hundred years ago , Frege wrote to Russell in the following terms1: I myself was long reluctant to recognize ranges of values and hence classes; but I saw no other possibility of placing arithmetic on a logical foundation. But the question is how do we apprehend logical objects? And I have found no other answer to it than this, We apprehend them as extensions of concepts, or more generally, as ranges of values of functions. I have (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  30.  38
    Logicism as Making Arithmetic Explicit.Vojtěch Kolman - 2015 - Erkenntnis 80 (3):487-503.
    This paper aims to shed light on the broader significance of Frege’s logicism against the background of discussing and comparing Wittgenstein’s ‘showing/saying’-distinction with Brandom’s idiom of logic as the enterprise of making the implicit rules of our linguistic practices explicit. The main thesis of this paper is that the problem of Frege’s logicism lies deeper than in its inconsistency : it lies in the basic idea that in arithmetic one can, and should, express everything that is implicitly presupposed so that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  63
    Frege’s Attack on “Abstraction” and his Defense of the “Applicability” of Arithmetic.Daniël F. M. Strauss - 2003 - South African Journal of Philosophy 22 (1):63-80.
    The traditional understanding of abstraction operates on the basis of the assumption that only entities are subject to thought processes in which particulars are disregarded and commonalities are lifted out (the so-called method of genus proximum and differentia specifica). On this basis Frege criticized the notion of abstraction and convincingly argued that (this kind of) “entitary- directed” abstraction can never provide us with any numbers. However, Frege did not consider the alternative of “property- abstraction.” In this article an argument for (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Two-Sorted Frege Arithmetic is Not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic 16 (4):1199-1232.
    Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn’t. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  27
    Rainer Stuhlmann-Laeisz.*Gottlob Freges Grundgesetze der Arithmetik: Ein Kommentar des Vorworts, des Nachworts und der einleitenden Paragraphen. [Gottlob Frege’s Basic Laws of Arithmetic: A Commentary on the Foreword, the Afterword and the Introductory Paragraphs].Matthias Wille - 2021 - Philosophia Mathematica 29 (2):288-291.
    Gottlob Frege’s Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. I/II; 1893/1903) is a modern classic. Since the 1930s it has belonged to an exclusive class of only eleven works in the history of symbolic logic, which contain the ‘first appearance of a new idea of fundamental importance’ [Church, 1936, p. 122], and its author is the only one whose other major works — Begriffsschrift (1879) and Die Grundlagen der Arithmetik (1884) — also belong to this distinguished group. Together with (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34. What Frege asked Alex the Parrot: Inferentialism, Number Concepts, and Animal Cognition.Erik Nelson - 2020 - Philosophical Psychology 33 (2):206-227.
    While there has been significant philosophical debate on whether nonlinguistic animals can possess conceptual capabilities, less time has been devoted to considering 'talking' animals, such as parrots. When they are discussed, their capabilities are often downplayed as mere mimicry. The most explicit philosophical example of this can be seen in Brandom's frequent comparisons of parrots and thermostats. Brandom argues that because parrots (like thermostats) cannot grasp the implicit inferential connections between concepts, their vocal articulations do not actually have any conceptual (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35. The development of arithmetic in Frege's Grundgesetze der Arithmetik.Richard Heck - 1993 - Journal of Symbolic Logic 58 (2):579-601.
    Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does prove each of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   63 citations  
  36.  82
    Frege’s puzzle and arithmetical formalism. Putting things in context.Sorin Costreie - 2013 - History and Philosophy of Logic 34 (3):207-224.
    The paper discusses the emergence of Frege's puzzle and the introduction of the celebrated distinction between sense and reference in the context of Frege's logicist project. The main aim of the paper is to show that not logicism per se is mainly responsible for this introduction, but Frege's constant struggle against formalism. Thus, the paper enlarges the historical context, and provides a reconstruction of Frege's philosophical development from this broader perspective.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  69
    Cognitive Foundations of Arithmetic: Evolution and Ontogenisis.Susan Carey - 2002 - Mind and Language 16 (1):37-55.
    Dehaene (this volume) articulates a naturalistic approach to the cognitive foundations of mathematics. Further, he argues that the ‘number line’ (analog magnitude) system of representation is the evolutionary and ontogenetic foundation of numerical concepts. Here I endorse Dehaene’s naturalistic stance and also his characterization of analog magnitude number representations. Although analog magnitude representations are part of the evolutionary foundations of numerical concepts, I argue that they are unlikely to be part of the ontogenetic foundations of the capacity to represent natural (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  38.  98
    Concepts, extensions, and Frege's logicist project.Matthias Schirn - 2006 - Mind 115 (460):983-1006.
    Although the notion of logical object plays a key role in Frege's foundational project, it has hardly been analyzed in depth so far. I argue that Marco Ruffino's attempt to fill this gap by establishing a close link between Frege's treatment of expressions of the form ‘the concept F’ and the privileged status Frege assigns to extensions of concepts as logical objects is bound to fail. I argue, in particular, that Frege's principal motive for introducing extensions into his logical theory (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Singular terms and arithmetical logicism.Ian Rumfitt - 2003 - Philosophical Books 44 (3):193--219.
    This article is a critical notice of Bob Hale and Crispin Wright's *The Reason's Proper Study* (OUP). It focuses particularly on their attempts (crucial to their neo-logicist project) to say what a singular term is. I identify problems for their account but include some constructive suggestions about how it might be improved.
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  40. Frege's Result: Frege's Theorem and Related Matters.Hirotoshi Tabata - 2012 - Frontiers of Philosophy in China 7 (3):351-366.
    One of the remarkable results of Frege’s Logicism is Frege’s Theorem, which holds that one can derive the main truths of Peano arithmetic from Hume’s Principle (HP) without using Frege’s Basic Law V. This result was rediscovered by the Neo-Fregeans and their allies. However, when applied in developing a more advanced theory of mathematics, their fundamental principles—the abstraction principles—incur some problems, e.g., that of inflation. This paper finds alternative paths for such inquiry in extensionalism and object theory.
     
    Export citation  
     
    Bookmark  
  41. The Implicit Logic of Plato's Parmenides.Zbigniew Król - 2013 - Filozofia Nauki 21 (1).
    This paper is devoted to the reconstruction of the implicit logic of Plato’s Par-menides. The reconstructed logic, F, makes it possible to form a new semi-intuitionistic system of logic of predicates, FN. The axioms of Peano Arithmetic (PA) and an axiom of infinity follow from FN. Therefore, FN can be seen as a new attempt at the realization of Frege’s logicist program. Some very strong systems can be seen as other variants of FN, e.g. Leśniewski’s ontology. The hypothesis from Parmenides (...)
     
    Export citation  
     
    Bookmark   2 citations  
  42. Context principle, fruitfulness of logic and the cognitive value of arithmetic in frege.Marco Antonio Ruffino - 1991 - History and Philosophy of Logic 12 (2):185-194.
    I try to reconstruct how Frege thought to reconcile the cognitive value of arithmetic with its analytical nature. There is evidence in Frege's texts that the epistemological formulation of the context principle plays a decisive role; it provides a way of obtaining concepts which are truly fruitful and whose contents cannot be grasped beforehand. Taking the definitions presented in the Begriffsschrift,I shall illustrate how this schema is intended to work.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  40
    Identity and the Cognitive Value of Logical Equations in Frege’s Foundational Project.Matthias Schirn - 2023 - Notre Dame Journal of Formal Logic 64 (4):495-544.
    In this article, I first analyze and assess the epistemological and semantic status of canonical value-range equations in the formal language of Frege’s Grundgesetze der Arithmetik. I subsequently scrutinize the relation between (a) his informal, metalinguistic stipulation in Grundgesetze I, Section 3, and (b) its formal counterpart, which is Basic Law V. One point I argue for is that the stipulation in Section 3 was designed not only to fix the references of value-range names, but that it was probably also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  45.  36
    On the Nature, Status, and Proof of Hume’s Principle in Frege’s Logicist Project.Matthias Schirn - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Cham, Switzerland: Springer Verlag.
    Sections “Introduction: Hume’s Principle, Basic Law V and Cardinal Arithmetic” and “The Julius Caesar Problem in Grundlagen—A Brief Characterization” are peparatory. In Section “Analyticity”, I consider the options that Frege might have had to establish the analyticity of Hume’s Principle, bearing in mind that with its analytic or non-analytic status the intended logical foundation of cardinal arithmetic stands or falls. Section “Thought Identity and Hume’s Principle” is concerned with the two criteria of thought identity that Frege states in 1906 and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Frege's Theorem and Mathematical Cognition.Lieven Decock - 2021 - In Francesca Boccuni & Andrea Sereni (eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism. Routledge. pp. 372-394.
  47.  26
    The Grundgesetze [review of Gottlob Frege, Basic Laws of Arithmetic. Derived Using Concept-script ].Nicholas Griffin - 2014 - Russell: The Journal of Bertrand Russell Studies 34 (2):176-183.
    In lieu of an abstract, here is a brief excerpt of the content:176 Reviews c:\users\ken\documents\type3402\rj 3402 050 red.docx 2015-02-04 9:19 PM THE GRUNDGESETZE Nicholas Griffin Russell Research Centre / McMaster U. Hamilton, on, Canada l8s 4l6 [email protected] Gottlob Frege. Basic Laws of Arithmetic. Derived Using Concept-script. Volumes i and ii. Translated and edited by Philip A. Ebert and Marcus Rossberg with Crispin Wright. Oxford: Oxford U. P., 2013. Pp. xxxix + xxxii + 253 + xv + 285 + A–42 + (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  48.  57
    Reading Frege's Grundgesetze.Richard G. Heck - 2012 - Oxford, England: Oxford University Press UK.
    Gottlob Frege's Grundgesetze der Arithmetik, or Basic Laws of Arithmetic, was intended to be his magnum opus, the book in which he would finally establish his logicist philosophy of arithmetic. But because of the disaster of Russell's Paradox, which undermined Frege's proofs, the more mathematical parts of the book have rarely been read. Richard G.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  49. Logicism Revisited.Otávio Bueno - 2001 - Principia 5 (1-2):99-124.
    In this paper, I develop a new defense of logicism: one that combines logicism and nominalism. First, I defend the logicist approach from recent criticisms; in particular from the charge that a cruciai principie in the logicist reconstruction of arithmetic, Hume's Principle, is not analytic. In order to do that, I argue, it is crucial to understand the overall logicist approach as a nominalist view. I then indicate a way of extending the nominalist logicist approach beyond arithmetic. Finally, I argue (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  77
    Review of Frege making sense , by Michael Beaney. London, U.k.: Duckworth, 1996. Pp. IX+358.Mitchell S. Green - 1999 - Mind 108:567-570.
    Purporting to show how Frege's contributions to philosophy of language and philosophical logic were developed with the aim of furthering his logicist programme, the author construes him as more systematic than is often recognized. Centrally, the notion of sense as espoused in Frege's monumental articles of the Nineties had only an ostensible justification as an account of the informativeness of a posteriori identity statements. In fact its rationale was to help articulate the thesis that arithmetical truth is analytic, since, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
1 — 50 / 959