Results for 'DNA mitocondrial'

985 found
Order:
  1.  21
    Las enfermedades raras en las patologías neurometabólicas.Julio Montoya, Joaquín Arenas, Eduardo Ruiz-Pesini & Miguel A. Martín-Casanueva - 2018 - Arbor 194 (789):461.
    Las miopatías metabólicas son un grupo de trastornos genéticos que disminuyen la capacidad del músculo esquelético para utilizar sustratos energéticos y sintetizar ATP. Estas alteraciones pueden clasificarse en tres tipos fundamentalmente: i) trastornos del metabolismo de los carbohidratos (del glucógeno y de la glucosa), ii) defectos del metabolismo lipídico, y iii) alteraciones de la fosforilación oxidativa –OXPHOS-. Las dos primeras se deben a deficiencias enzimáticas de las rutas metabólicas de degradación y síntesis de glúcidos y lípidos y muestran diversas manifestaciones (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  36
    Christian Theism and the Philosophical Meaning of Cosmic Evolution.Joseph M. Zycinski - 2005 - Revista Portuguesa de Filosofia 61 (1):211 - 223.
    Interpreting John Paul II's message to the Pontifical Academy of Sciences in the context of the new scientific discoveries concerning the mitochondrial DNA, one can argue that the human species emerged in Africa some 200,000 years ago. The very problem of the emergence of the human soul in the process of biological evolution represents a subject outside the cognitive competence of science. Attempts can be undertaken to explain this issue in the epistemological perspective of philosophy and theology. In traditional versions (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  44
    The growth of meaning and the limits of formalism: in science, in law.Susan Haack - 2009 - Análisis Filosófico 29 (1):5-29.
    A natural language is an organic living thing; and meanings change as words take on new, and shed old, connotations. Recent philosophy of language has paid little attention to the growth of meaning; radical philosophers like Feyerabend and Rorty have suggested that meaning-change undermines the pretensions of science to be a rational enterprise. Thinkers in the classical pragmatist tradition, however -Peirce in philosophy of science and, more implicitly, Holmes in legal theory- both recognized the significance of growth of meaning, and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  53
    Divine dna? “Secular” and “religious” representations of science in nonfiction science television programs.Will Mason-Wilkes - 2020 - Zygon 55 (1):6-26.
    Through analysis of film sequences focusing on DNA in two British Broadcasting Corporation nonfiction science television programs, Wonders of Life and Bang! Goes the Theory, first broadcast in 2013, contrasting “religious” and “secular” representations of science are identified. In the “religious” portrayal, immutable scientific knowledge is revealed to humanity by nature with minimal human intervention. Science provides a creation story, “explanatory omnicompetence,” and makes life existentially meaningful. In the “secular” portrayal, scientific knowledge is changeable; is produced through technical skill in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  33
    DNA Methylation in Embryo Development: Epigenetic Impact of ART.Sebastian Canovas, Pablo J. Ross, Gavin Kelsey & Pilar Coy - 2017 - Bioessays 39 (11):1700106.
    DNA methylation can be considered a component of epigenetic memory with a critical role during embryo development, and which undergoes dramatic reprogramming after fertilization. Though it has been a focus of research for many years, the reprogramming mechanism is still not fully understood. Recent results suggest that absence of maintenance at DNA replication is a major factor, and that there is an unexpected role for TET3-mediated oxidation of 5mC to 5hmC in guarding against de novo methylation. Base-resolution and genome-wide profiling (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  18
    Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex.Vincent Géli & Michael Lisby - 2015 - Bioessays 37 (12):1287-1292.
    The nuclear pore complex (NPC) is emerging as a center for recruitment of a class of “difficult to repair” lesions such as double‐strand breaks without a repair template and eroded telomeres in telomerase‐deficient cells. In addition to such pathological situations, a recent study by Su and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure‐forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  21
    DNA replication timing: Coordinating genome stability with genome regulation on the X chromosome and beyond.Amnon Koren - 2014 - Bioessays 36 (10):997-1004.
    Recent studies based on next‐generation DNA sequencing have revealed that the female inactive X chromosome is replicated in a rapid, unorganized manner, and undergoes increased rates of mutation. These observations link the organization of DNA replication timing to gene regulation on one hand, and to the generation of mutations on the other hand. More generally, the exceptional biology of the inactive X chromosome highlights general principles of genome replication. Cells may control replication timing by a combination of intrinsic replication origin (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  65
    Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description.Paul Z. Goldstein & Rob DeSalle - 2011 - Bioessays 33 (2):135-147.
    DNA barcodes, like traditional sources of taxonomic information, are potentially powerful heuristics in the identification of described species but require mindful analytical interpretation. The role of DNA barcoding in generating hypotheses of new taxa in need of formal taxonomic treatment is discussed, and it is emphasized that the recursive process of character evaluation is both necessary and best served by understanding the empirical mechanics of the discovery process. These undertakings carry enormous ramifications not only for the translation of DNA sequence (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  31
    DNA barcoding and the changing ontological commitments of taxonomy.James W. E. Lowe & David S. Ingram - 2023 - Biology and Philosophy 38 (4):1-27.
    This paper assesses the effect of DNA barcoding—the use of informative genetic markers to identify and discriminate between species—on taxonomy. Throughout, we interpret this in terms of _varipraxis_, a concept we introduce to make sense of the treatment of biological variation by scientists and other practitioners. From its inception, DNA barcoding was criticised for being reductive, in attempting to replace multiple forms of taxonomic evidence with just one: DNA sequence variation in one or a few indicative genes. We show, though, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  35
    DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond.Olga Zaytseva & Leonie M. Quinn - 2018 - Bioessays 40 (4):1700235.
    Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  76
    DNA patents and scientific discovery and innovation: Assessing benefits and risks.David B. Resnik - 2001 - Science and Engineering Ethics 7 (1):29-62.
    This paper focuses on the question of whether DNA patents help or hinder scientific discovery and innovation. While DNA patents create a wide variety of possible benefits and harms for science and technology, the evidence we have at this point in time supports the conclusion that they will probably promote rather than hamper scientific discovery and innovation. However, since DNA patenting is a relatively recent phenomena and the biotechnology industry is in its infancy, we should continue to gather evidence about (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  12.  11
    Optimizing DNA hypomethylating therapy in acute myeloid leukemia and myelodysplastic syndromes.Jasmin Straube, Steven W. Lane & Therese Vu - 2021 - Bioessays 43 (10):2100125.
    The DNA hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) improve survival and transfusion independence in myelodysplastic syndrome (MDS) and enable a low intensity cytotoxic treatment for aged AML patients unsuitable for intensive chemotherapy, particularly in combination with novel agents. The proposed mechanism of AZA and DAC relies on active DNA replication and therefore patient responses are only observed after multiple cycles of treatment. Although extended dosing may provide the optimal scheduling, the reliance of injectable formulation of the drug limits (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  34
    DNA supercoiling helps to unlink sister duplexes after replication.Alexander Vologodskii - 2010 - Bioessays 32 (1):9-12.
    DNA supercoiling is one of the mechanisms that can help unlinking of newly replicated DNA molecules. Although DNA topoisomerases, which catalyze the strand passing of DNA segments through one another, make the unlinking problem solvable in principle, it remains difficult to complete the process that enables the separation of the sister duplexes. A few different mechanisms were developed by nature to solve the problem. Some of the mechanisms are very intuitive while the others, like topology simplification by type II DNA (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  14.  19
    DNA methylation with a sting: An active DNA methylation system in the honeybee.Matthias Schaefer & Frank Lyko - 2007 - Bioessays 29 (3):208-211.
    The existence of DNA methylation in insects has been a controversial subject over a long period of time. The recently completed genome sequence of the honeybee Apis mellifera has revealed the first insect with a full complement of DNA methyltransferases.1 A parallel study demonstrated that these enzymes are catalytically active and that Apis genes can be methylated in specific patterns.2 These findings establish bees as a model to analyze the function of DNA methylation systems in invertebrate organisms and might also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  6
    Intrinsic DNA bends: an organizer of local chromatin structure for transcription.Takashi Ohyama - 2001 - Bioessays 23 (8):708-715.
    DNA with a curved trajectory of its helix axis is called bent DNA, or curved DNA. Interestingly, biologically important DNA regions often contain this structure, irrespective of the origin of DNA. In the last decade, considerable progress has been made in clarifying one role of bent DNA in prokaryotic transcription and its mechanism of action. However, the role of bent DNA in eukaryotic transcription remains unclear. Our recent study raises the possibility that bent DNA is implicated in the “functional packaging” (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  13
    Recombinant DNA: science, ethics, and politics.John Richards (ed.) - 1978 - New York: Academic Press.
  17.  11
    DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis.Shannon J. McKie, Keir C. Neuman & Anthony Maxwell - 2021 - Bioessays 43 (4):2000286.
    DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  35
    Ancient DNA: Using molecular biology to explore the past.Terence A. Brown & Keri A. Brown - 1994 - Bioessays 16 (10):719-726.
    Ancient DNA has been discovered in many types of preserved biological material, including bones, mummies, museum skins, insects in amber and plant fossils, and has become an important research tool in disciplines as diverse as archaeology, conservation biology and forensic science. In archaeology, ancient DNA can contribute both to the interpretation of individual sites and to the development of hypotheses about past populations. Site interpretation is aided by DNA‐based sex typing of fragmentary human bones, and by the use of genetic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  24
    (1 other version)DNA and The Commons.David Koepsell - 2015-03-19 - In Michael Boylan (ed.), Who Owns You? Wiley. pp. 119–136.
    For nearly two decades, nonengineered human DNA was patented without challenge. The US Supreme Court recently agreed that many of those patents do not fit accurately into any currently accepted scheme of intellectual property protection. One should consider: whether DNA fits into other forms of property protection (land, moveables, chattels, etc.); whether DNA warrants a new and unique form of property protection, or whether DNA belongs to the class of objects generally considered to be as “the commons.” Current schemes of (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  20.  47
    DNA Fingerprinting and the Offertory Prayer: A Sermon.Kim L. Beckmann - 1999 - Zygon 34 (3):537-541.
    This Christian sermon uses a DNA lab experience as a basis for theological reflection on ourselves and our offering. Who are we to God? What determines the self that we offer? Can the alphabet of DNA shed light for us on the Word of God in our lives? This first attempt to introduce the language and laboratory environment of genetic testing (represented by DNA fingerprinting) within a parish preaching context juxtaposes liturgical, scientific, and biblical language and settings for fresh insights.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  26
    DNA packaging and cutting by phage terminases: Control in phage T4 by a synaptic mechanism.Lindsay W. Black - 1995 - Bioessays 17 (12):1025-1030.
    Phage DNA packaging occurs by DNA translocation into a prohead. Terminases are enzymes which initiate DNA packaging by cutting the DNA concatemer, and they are closely fitted structurally to the portal vertex of the prohead to form a ‘packasome’. Analysis among a number of phages supports an active role of the terminases in coupling ATP hydrolysis to DNA translocation through the portal. In phage T4 the small terminase subunit promotes a sequence‐specific terminase gene amplification within the chromosome. This link between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  18
    DNA pedagogy: between sociology of science and historical-epistemic issues (Pedagogia del DNA: tra sociologia della scienza e questioni storico-epistemiche).Teresa Celestino - 2023 - Science and Philosophy 11 (2):7-28.
    The pedagogical function of science teaching may benefit from an analysis of the historical-epistemic dimension, without neglecting the socio-political context in which a given research was carried out. In the case of DNA structure, the background of its discovery is particularly complex. Starting from the analysis of some papers, the view on the circumstances that led to their drafting broadens. We try to answer the fundamental question for any educator: why teach all that? Ethics issues are related to the general (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Dna sequences from below: A nominalist approach.Yu Lin & Peter Simons - unknown
    We define DNA sequence by a bottom-up approach, starting with a real sequence from an actual biological sample. By providing axioms for notions of string, substring and strand, we formally define a DNA sequence, and a DNA molecule as composed of two antiparallel strands. We note that a sequence is a kind of group in which each member stands a certain relation to every other. The spatial aspects of a DNA sequence are also described.
    No categories
     
    Export citation  
     
    Bookmark  
  24. DNA dan kehalalan dalam bidang farmaseutikal, isu-isu utama.Norkumala Awang - 2014 - In Azrina Sobian (ed.), Sains dan nilai. Kuala Lumpur: Penerbit IKIM.
    No categories
     
    Export citation  
     
    Bookmark  
  25.  24
    DNA synthesis control in yeast: An evolutionarily conserved mechanism for regulating DNA synthesis genes?Gary F. Merrill, Brian A. Morgan, Noel F. Lowndes & Leland H. Johnston - 1992 - Bioessays 14 (12):823-830.
    After yeast cells commit to the cell cycle in a process called START, genes required for DNA synthesis are expressed in late G1. Periodicity is mediated by a hexameric sequence, known as a MCB element, present in all DNA synthesis gene promoters. A complex that specifically binds MCBs has been identified. One polypeptide in the MCB complex is Swi6, a transcription factor that together with Swi4 also binds G1 cyclin promoters and participates in a positive feedback loop at START. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Junk or functional DNA? ENCODE and the function controversy.Pierre-Luc Germain, Emanuele Ratti & Federico Boem - 2014 - Biology and Philosophy 29 (6):807-831.
    In its last round of publications in September 2012, the Encyclopedia Of DNA Elements (ENCODE) assigned a biochemical function to most of the human genome, which was taken up by the media as meaning the end of ‘Junk DNA’. This provoked a heated reaction from evolutionary biologists, who among other things claimed that ENCODE adopted a wrong and much too inclusive notion of function, making its dismissal of junk DNA merely rhetorical. We argue that this criticism rests on misunderstandings concerning (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  27.  12
    Harnessing the cooperation between DNA‐PK and cGAS in cancer therapies.Clara Taffoni, Moritz Schüssler, Isabelle K. Vila & Nadine Laguette - 2023 - Bioessays 45 (7):2300045.
    The cyclic GMP‐AMP synthase–stimulator of interferon genes (cGAS‐STING) pathway is central for the initiation of anti‐tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS‐STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA‐dependent protein kinase (DNA‐PK) complex, that recently emerged as an activator of inflammatory responses in tumour (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. The DNA Technology (Use and Application) Regulation Bill, 2019: A Critical Analysis.Deepa Kansra, Manpreet Dhillon, Mandira Narain, Prabhat Mishra, Nupur Chowdhury & P. Puneeth - 2021 - Indian Law Institute Law Review 1 (Winter):278-301.
    The aim of this paper is to explain the emergence and use of DNA fingerprinting technology in India, noting the specific concerns faced by the Indian Legal System related to the use of this novel forensic technology in the justice process. Furthermore, the proposed construction of a National DNA Data Bank is discussed taking into consideration the challenges faced by the government in legislating the DNA Bill into law. A critical analysis of the DNA Technology (Use and Application) Regulation Bill, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  20
    Recombinant DNA and Genome-editing Technologies: Embodied Utopias and Heterotopias.Eva Šlesingerová - 2021 - Body and Society 27 (2):32-57.
    Recombinant DNA technology is an essential area of life engineering. The main aim of research in this field is to experimentally explore the possibilities of repairing damaged human DNA, healing or enhancing future human bodies. Based on ethnographic research in a Czech biochemical laboratory, the article explores biotechnological corporealities and their specific ontology through dealings with bio-objects, the bodywork of scientists. Using the complementary concepts of utopia and heterotopia, the text addresses the situation of bodies and bio-objects in a laboratory. (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  30.  96
    From DNA- to NA-centrism and the conditions for gene-centrism revisited.Alexis De Tiège, Koen Tanghe, Johan Braeckman & Yves Van de Peer - 2014 - Biology and Philosophy 29 (1):55-69.
    First the ‘Weismann barrier’ and later on Francis Crick’s ‘central dogma’ of molecular biology nourished the gene-centric paradigm of life, i.e., the conception of the gene/genome as a ‘central source’ from which hereditary specificity unidirectionally flows or radiates into cellular biochemistry and development. Today, due to advances in molecular genetics and epigenetics, such as the discovery of complex post-genomic and epigenetic processes in which genes are causally integrated, many theorists argue that a gene-centric conception of the organism has become problematic. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  27
    (1 other version)Dna en wijsgerige antropologie.C. A. Van Peursen - 1966 - Tijdschrift Voor Filosofie 28 (1):53-71.
    The article points out the implications of the discovery of the structure of desoxyribonuceine-acid for the philosophical study of man. The DNA contains in the chromosomes the genetic information. It contains a code which is being deciphered by the way the „instructions”, contained by the specific order of elements of the DNA, are realised by the whole organisation of the organism. In the course of evolution these instructions are becoming more specific and more complex, resulting in the organisation of the (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  19
    DNA G‐Quadruplexes (G4s) Modulate Epigenetic (Re)Programming and Chromatin Remodeling.Anna Varizhuk, Ekaterina Isaakova & Galina Pozmogova - 2019 - Bioessays 41 (9):1900091.
    Here, the emerging data on DNA G‐quadruplexes (G4s) as epigenetic modulators are reviewed and integrated. This concept has appeared and evolved substantially in recent years. First, persistent G4s (e.g., those stabilized by exogenous ligands) were linked to the loss of the histone code. More recently, transient G4s (i.e., those formed upon replication or transcription and unfolded rapidly by helicases) were implicated in CpG island methylation maintenance and de novo CpG methylation control. The most recent data indicate that there are direct (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  64
    DNA Repair: The Search for Homology.James E. Haber - 2018 - Bioessays 40 (5):1700229.
    The repair of chromosomal double‐strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51‐mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  12
    Loss of DNA methylation disrupts syncytiotrophoblast development: Proposed consequences of aberrant germline gene activation.Georgia Lea & Courtney W. Hanna - 2024 - Bioessays 46 (1):2300140.
    DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de‐repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up‐regulation of germline genes and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  47
    DNA-Banken und Treuhandschaft [DNA Banking and Trusteeship].Doris Schröder & Garrath Williams - 2002 - Ethik in der Medizin 14 (2):84-95.
    Definition of the problem:The frequency and scope of human genetic banking has increased significantly in recent years and is set to expand still further. Two of the major growth areas in medical research, pharmacogenomics and population genetics, rely on large DNA banks to provide extensive, centralised and standardised genetic information as well as clinical and personal data. This development raises ethical concerns. Arguments and conclusion: Our article focuses on the appropriateness of informed consent as a means to safeguard both research (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  36.  15
    Recombinant DNA techniques in diagnostic and preventive medicine.Stephen Hodgkinson & Peter Scambler - 1984 - Bioessays 1 (1):12-15.
    The introduction of recombinant DNA technology into the field of genetics has led to a rapid advancement of our knowledge of genes and genome structure. Such technology, applied to the human genome, has provided valuable information concerning the nature and possible treatment of inherited disorders. The possibility that this knowledge will pave the way for the correction of at least some of these disorders has captured the imagination of the informed public. In this review we look at the accomplishments of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  17
    Unusual DNA structures, chromatin and transcription.Kensal van Holde & Jordanka Zlatanova - 1994 - Bioessays 16 (1):59-68.
    Extensive studies of DNA secondary structure during the past decade have shown that DNA is a dynamic molecule, whose structure depends on the underlying nucleotide sequence and is influenced by the environment and the overall DNA topology. Three major non‐B‐DNA structures have been described (Z‐DNA, triplex DNA and cruciform DNA) which are stabilized by unconstrained negative supercoiling and can be formed under physiological conditions. In this essay we summarize the DNA primary structure features that are pertinent to the formation of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  49
    (1 other version)DNA Patents and Human Dignity.David B. Resnik - 2001 - Journal of Law, Medicine and Ethics 29 (2):152-165.
    Those objecting to human DNA patenting frequently do so on the grounds that the practice violates or threatens human dignity. For example, from 1993 to 1994, more than thirty organizations representing indigenous peoples approved formal declarations objecting to the National Institutes of Health's bid to patent viral DNA taken from subjects in Papua New Guinea and the Solomon Islands. Although these were not patents on human DNA, the organizations argued that the patents could harm and exploit indigenous peoples and violate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  39.  14
    Eukaryotic DNA topoisomerase IIβ.Richard W. Padgett, Pradeep Das & Srikant Krishna - 1998 - Bioessays 20 (3):215-226.
    Type II DNA topoisomerase activity is required to change DNA topology. It is important in the relaxation of DNA supercoils generated by cellular processes, such as transcription and replication, and it is essential for the condensation of chromosomes and their segregation during mitosis. In mammals this activity is derived from at least two isoforms, termed DNA topoisomerase IIα and β. The α isoform is involved in chromosome condensation and segregation, whereas the role of the β isoform is not yet clear. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  40.  30
    Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair.David R. F. Leach - 1994 - Bioessays 16 (12):893-900.
    Long DNA palindromes pose a threat to genome stability. This instability is primarily mediated by slippage on the lagging strand of the replication fork between short directly repeated sequences close to the ends of the palindrome. The role of the palindrome is likely to be the juxtaposition of the directly repeated sequences by intrastrand base‐pairing. This intra‐strand base‐pairing, if present on both strands, results in a cruciform structure. In bacteria, cruciform structures have proved difficult to detect in vivo, suggesting that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  17
    Managing shifting species: Ancient DNA reveals conservation conundrums in a dynamic world.Jonathan M. Waters & Stefanie Grosser - 2016 - Bioessays 38 (11):1177-1184.
    The spread of exotic species represents a major driver of biological change across the planet. While dispersal and colonization are natural biological processes, we suggest that the failure to recognize increasing rates of human‐facilitated self‐introductions may represent a threat to native lineages. Notably, recent biogeographic analyses have revealed numerous cases of biological range shifts in response to anthropogenic impacts and climate change. In particular, ancient DNA analyses have revealed several cases in which lineages traditionally thought to be long‐established “natives” are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  16
    DNA replication timing: Biochemical mechanisms and biological significance.Nicholas Rhind - 2022 - Bioessays 44 (11):2200097.
    The regulation of DNA replication is a fascinating biological problem both from a mechanistic angle—How is replication timing regulated?—and from an evolutionary one—Why is replication timing regulated? Recent work has provided significant insight into the first question. Detailed biochemical understanding of the mechanism and regulation of replication initiation has made possible robust hypotheses for how replication timing is regulated. Moreover, technical progress, including high‐throughput, single‐molecule mapping of replication initiation and single‐cell assays of replication timing, has allowed for direct testing of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  14
    Recombinant DNA: Backing Off on Legislation.Tabitha M. Powledge - 1977 - Hastings Center Report 7 (6):8-10.
  44.  30
    The origin of DNA:RNA hybridization.Dario Giacomoni - 1993 - Journal of the History of Biology 26 (1):89-107.
    Besides its use in basic research, the DNA:RNA hybridization technique has helped the development of genetic engineering: it is instrumental in the isolation of specific genes that can be inserted into foreign cells, thus modifying their genetic information. Plants, animals, and microorganisms can now be altered to yield improved crops, pest-resistant plants, and a cheaper source of important proteins or drugs. The social relevance of genetic engineering received official sanction in 1980 when the U.S. Supreme Court ruled that genetically modified (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  45.  39
    DNA replication and models for the origin of piRNAs.Jack R. Bateman & Chao-Ting Wu - 2007 - Bioessays 29 (4):382-385.
    The piRNA class of small RNAs are distinct from other small RNAs by their ∼26–31 nucleotide size, single‐strandedness and strand‐specificity as well as by the clustered arrangement of their origins. Here, we highlight how these features are reminiscent of the mechanisms of DNA replication, and then present three models suggesting that the origin of piRNAs may be mechanistically similar to key processes in DNA replication. BioEssays 29:382–385, 2007. © 2007 Wiley Periodicals, Inc.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  10
    DNA and Family Matters.Madeline Kilty - 2016 - Germany: LAP Lambert Academic Publishing.
    Under the terms of the UN Convention on the Rights of the Child, which Australia has ratified, children have a right to know who their genetic parents are. As a result, we have a duty to establish these facts and to make this information available for children to access should they wish to know. Introducing mandatory DNA testing of newborns and their alleged genetic parents is one viable option to ensure that this information is available for children to access. Indeed, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  38
    Commercial DNA tests and police investigations: a broad bioethical perspective.Nina F. de Groot, Britta C. van Beers & Gerben Meynen - 2021 - Journal of Medical Ethics 47 (12):788-795.
    Over 30 million people worldwide have taken a commercial at-home DNA test, because they were interested in their genetic ancestry, disease predisposition or inherited traits. Yet, these consumer DNA data are also increasingly used for a very different purpose: to identify suspects in criminal investigations. By matching a suspect’s DNA with DNA from a suspect’s distant relatives who have taken a commercial at-home DNA test, law enforcement can zero in on a perpetrator. Such forensic use of consumer DNA data has (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  48.  14
    Eukaryotic DNA topoisomerase IIβ.Caroline A. Austin & Katherine L. Marsh - 1998 - Bioessays 20 (3):215-226.
    Type II DNA topoisomerase activity is required to change DNA topology. It is important in the relaxation of DNA supercoils generated by cellular processes, such as transcription and replication, and it is essential for the condensation of chromosomes and their segregation during mitosis. In mammals this activity is derived from at least two isoforms, termed DNA topoisomerase IIα and β. The α isoform is involved in chromosome condensation and segregation, whereas the role of the β isoform is not yet clear. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  13
    Mortal and immortal DNA: science and the lure of myth.Gerald Weissmann - 2009 - New York: Bellevue Literary Press.
    Mortal and immortal DNA : Craig Venter and the lure of "lamia" -- Homeopathy : Holmes, hogwarts, and the Prince of Wales -- Citizen Pinel and the madman at Bellevue -- The experimental pathology of stress : Hans Selye to Paris Hilton -- Gore's fever and Dante's Inferno : Chikungunya reaches Ravenna -- Giving things their proper names : Carl Linnaeus and W.H. Auden -- Spinal irritation and fibromyalgia : Lincoln's surgeon general and the three graces -- Tithonus and the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  50.  13
    DNA adenine methylation in eukaryotes: Enzymatic mark or a form of DNA damage?Matthias Bochtler & Humberto Fernandes - 2021 - Bioessays 43 (3):2000243.
    Abstract6‐methyladenine (6mA) is fairly abundant in nuclear DNA of basal fungi, ciliates and green algae. In these organisms, 6mA is maintained near transcription start sites in ApT context by a parental‐strand instruction dependent maintenance methyltransferase and is positively associated with transcription. In animals and plants, 6mA levels are high only in organellar DNA. The 6mA levels in nuclear DNA are very low. They are attributable to nucleotide salvage and the activity of otherwise mitochondrial METTL4, and may be considered as a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 985