Results for 'Wine Quality Prediction, Machine Learning'

990 found
Order:
  1.  12
    Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?Ruijie Sun, Feng Liu, Yinan Li, Rongping Wang & Jing Luo - 2024 - Journal of Business Ethics 195 (1):151-166.
    Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  25
    No-Reference Stereoscopic Image Quality Assessment Based on Binocular Statistical Features and Machine Learning.Peng Xu, Man Guo, Lei Chen, Weifeng Hu, Qingshan Chen & Yujun Li - 2021 - Complexity 2021:1-14.
    Learning a deep structure representation for complex information networks is a vital research area, and assessing the quality of stereoscopic images or videos is challenging due to complex 3D quality factors. In this paper, we explore how to extract effective features to enhance the prediction accuracy of perceptual quality assessment. Inspired by the structure representation of the human visual system and the machine learning technique, we propose a no-reference quality assessment scheme for stereoscopic (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  85
    Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects.Rashid Naseem, Bilal Khan, Arshad Ahmad, Ahmad Almogren, Saima Jabeen, Bashir Hayat & Muhammad Arif Shah - 2020 - Complexity 2020:1-21.
    Software defects prediction at the initial period of the software development life cycle remains a critical and important assignment. Defect prediction and correctness leads to the assurance of the quality of software systems and has remained integral to study in the previous years. The quick forecast of imperfect or defective modules in software development can serve the development squad to use the existing assets competently and effectively to provide remarkable software products in a given short timeline. Hitherto, several researchers (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  21
    Prediction of Banks Efficiency Using Feature Selection Method: Comparison between Selected Machine Learning Models.Hamzeh F. Assous - 2022 - Complexity 2022:1-15.
    This study aims to examine the main determinants of efficiency of both conventional and Islamic Saudi banks and then choose the best fit model among machine learning prediction models, Chi-squared automatic interaction detector, linear regression, and neural network ). The data were collected from the annual financial reports of Saudi banks from 2014 to 2018. The Saudi banking sector consists of 11 banks, 4 of which are Islamic. In this study, the major financial ratios are subgrouped into the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  79
    Ensemble Machine Learning Model for Classification of Spam Product Reviews.Muhammad Fayaz, Atif Khan, Javid Ur Rahman, Abdullah Alharbi, M. Irfan Uddin & Bader Alouffi - 2020 - Complexity 2020:1-10.
    Nowadays, online product reviews have been at the heart of the product assessment process for a company and its customers. They give feedback to a company on improving product quality, planning, and monitoring its business schemes in order to increase sale and gain more profit. They are also helpful for customers to select the right products in less effort and time. Most companies make spam reviews of products in order to increase the products sales and gain more profit. Detecting (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  27
    Interval Prediction Method for Solar Radiation Based on Kernel Density Estimation and Machine Learning.Meiyan Zhao, Yuhu Zhang, Tao Hu & Peng Wang - 2022 - Complexity 2022:1-13.
    Precise global solar radiation data are indispensable to the design, planning, operation, and management of solar radiation utilization equipment. Some examples prove that the uncertainty of the prediction of solar radiation provides more value than deterministic ones in the management of power systems. This study appraises the potential of random forest, V-support vector regression, and a resilient backpropagation artificial neural network for daily global solar radiation point prediction from average relative humidity, daily average temperature, and daily sunshine duration. To acquire (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  18
    Prediction and Classification of Financial Criteria of Management Control System in Manufactories Using Deep Interaction Neural Network (DINN) and Machine Learning.Amir Yousefpour & Hamid Mazidabadi Farahani - 2022 - Complexity 2022:1-12.
    The management control system aids administrators in guiding a business toward its organizational plans; as a result, management control is primarily concerned with the execution of the plan and plans. Financial and nonfinancial criteria are used to create management control systems. The financial element focuses on net income, earnings, and other financial metrics. The two components of leadership strategy in this study are cost and differentiation, which highlight the strategy of differentiation in attaining higher quality due to the robust (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  16
    Evaluating the Role of Machine Learning in Economics: A Cutting-Edge Addition or Rhetorical Device?Sławomir Czech - 2023 - Studies in Logic, Grammar and Rhetoric 68 (1):279-293.
    This paper explores the integration of machine learning into economics and social sciences, assessing its potential impact and limitations. It introduces fundamental machine learning concepts and principles, highlighting the differences between the two disciplines, particularly the focus on causal inference in economics and prediction in machine learning. The paper discusses diverse applications of machine learning, from extracting insights from unstructured data to creating novel indicators and improving predictive accuracy, while also addressing challenges (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  20
    A Field-Based Approach to Determine Soft Tissue Injury Risk in Elite Futsal Using Novel Machine Learning Techniques.Iñaki Ruiz-Pérez, Alejandro López-Valenciano, Sergio Hernández-Sánchez, José M. Puerta-Callejón, Mark De Ste Croix, Pilar Sainz de Baranda & Francisco Ayala - 2021 - Frontiers in Psychology 12.
    Lower extremity non-contact soft tissue injuries are prevalent in elite futsal. The purpose of this study was to develop robust screening models based on pre-season measures obtained from questionnaires and field-based tests to prospectively predict LE-ST injuries after having applied a range of supervised Machine Learning techniques. One hundred and thirty-nine elite futsal players underwent a pre-season screening evaluation that included individual characteristics; measures related to sleep quality, athlete burnout, psychological characteristics related to sport performance and self-reported (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  27
    Avoiding the Inherent Limitations in Datasets Used for Measuring Aesthetics When Using a Machine Learning Approach.Adrian Carballal, Carlos Fernandez-Lozano, Nereida Rodriguez-Fernandez, Luz Castro & Antonino Santos - 2019 - Complexity 2019:1-12.
    An important topic in evolutionary art is the development of systems that can mimic the aesthetics decisions made by human begins, e.g., fitness evaluations made by humans using interactive evolution in generative art. This paper focuses on the analysis of several datasets used for aesthetic prediction based on ratings from photography websites and psychological experiments. Since these datasets present problems, we proposed a new dataset that is a subset of DPChallenge.com. Subsequently, three different evaluation methods were considered, one derived from (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  19
    Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review.Fariba Tohidinezhad, Dario Di Perri, Catharina M. L. Zegers, Jeanette Dijkstra, Monique Anten, Andre Dekker, Wouter Van Elmpt, Daniëlle B. P. Eekers & Alberto Traverso - 2022 - Frontiers in Psychology 13.
    PurposeAlthough an increasing body of literature suggests a relationship between brain irradiation and deterioration of neurocognitive function, it remains as the standard therapeutic and prophylactic modality in patients with brain tumors. This review was aimed to abstract and evaluate the prediction models for radiation-induced neurocognitive decline in patients with primary or secondary brain tumors.MethodsMEDLINE was searched on October 31, 2021 for publications containing relevant truncation and MeSH terms related to “radiotherapy,” “brain,” “prediction model,” and “neurocognitive impairments.” Risk of bias was (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  14
    Fusion-Learning-Based Optimization: A Modified Metaheuristic Method for Lightweight High-Performance Concrete Design.Ghodrat Rahchamani, Seyed Mojtaba Movahedifar & Amin Honarbakhsh - 2022 - Complexity 2022:1-15.
    In order to build high-quality concrete, it is imperative to know the raw materials in advance. It is possible to accurately predict the quality of concrete and the amount of raw materials used using machine learning-enhanced methods. An automated process based on machine learning strategies is proposed in this paper for predicting the compressive strength of concrete. Fusion-learning-based optimization is used in the proposed approach to generate a strong learner by pooling support vector (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  41
    Learning Orthographic Structure With Sequential Generative Neural Networks.Alberto Testolin, Ivilin Stoianov, Alessandro Sperduti & Marco Zorzi - 2016 - Cognitive Science 40 (3):579-606.
    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine, a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. Using machine learning to predict decisions of the European Court of Human Rights.Masha Medvedeva, Michel Vols & Martijn Wieling - 2020 - Artificial Intelligence and Law 28 (2):237-266.
    When courts started publishing judgements, big data analysis within the legal domain became possible. By taking data from the European Court of Human Rights as an example, we investigate how natural language processing tools can be used to analyse texts of the court proceedings in order to automatically predict judicial decisions. With an average accuracy of 75% in predicting the violation of 9 articles of the European Convention on Human Rights our approach highlights the potential of machine learning (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  15. Machine learning in scientific grant review: algorithmically predicting project efficiency in high energy physics.Vlasta Sikimić & Sandro Radovanović - 2022 - European Journal for Philosophy of Science 12 (3):1-21.
    As more objections have been raised against grant peer-review for being costly and time-consuming, the legitimate question arises whether machine learning algorithms could help assess the epistemic efficiency of the proposed projects. As a case study, we investigated whether project efficiency in high energy physics can be algorithmically predicted based on the data from the proposal. To analyze the potential of algorithmic prediction in HEP, we conducted a study on data about the structure and outcomes of HEP experiments (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  16.  41
    Predicting and explaining with machine learning models: Social science as a touchstone.Oliver Buchholz & Thomas Grote - 2023 - Studies in History and Philosophy of Science Part A 102 (C):60-69.
    Machine learning (ML) models recently led to major breakthroughs in predictive tasks in the natural sciences. Yet their benefits for the social sciences are less evident, as even high-profile studies on the prediction of life trajectories have shown to be largely unsuccessful – at least when measured in traditional criteria of scientific success. This paper tries to shed light on this remarkable performance gap. Comparing two social science case studies to a paradigm example from the natural sciences, we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  55
    Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework.Xin Xu, Feng Xiong & Zhe An - 2022 - Journal of Business Ethics 186 (1):137-158.
    This study focuses on a traditional business ethics question and aims to use advanced techniques to improve the performance of corporate fraud prediction. Based on the GONE framework, we adopt the machine learning model to predict the occurrence of corporate fraud in China. We first identify a comprehensive set of fraud-related variables and organize them into each category (i.e., Greed, Opportunity, Need, and Exposure) of the GONE framework. Among the six machine learning models tested, the Random (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  65
    Cognition‐Enhanced Machine Learning for Better Predictions with Limited Data.Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua Wood, Michael Krusmark, Tiffany Jastrzembski & Christopher W. Myers - 2022 - Topics in Cognitive Science 14 (4):739-755.
    The fields of machine learning (ML) and cognitive science have developed complementary approaches to computationally modeling human behavior. ML's primary concern is maximizing prediction accuracy; cognitive science's primary concern is explaining the underlying mechanisms. Cross-talk between these disciplines is limited, likely because the tasks and goals usually differ. The domain of e-learning and knowledge acquisition constitutes a fruitful intersection for the two fields’ methodologies to be integrated because accurately tracking learning and forgetting over time and predicting (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19.  56
    An Evaluation Study on Investment Efficiency: A Predictive Machine Learning Approach.Weiwei Hao, Hongyan Gao & Zongqing Liu - 2021 - Complexity 2021:1-9.
    This paper proposes a nonlinear autoregressive neural network method for the investment performance evaluation of state-owned enterprises. It is different from the traditional method based on machine learning, such as linear regression, structural equation, clustering, and principal component analysis; this paper uses a regression prediction method to analyze investment efficiency. In this paper, we firstly analyze the relationship between diversified ownership reform, corporate debt leverage, and the investment efficiency of state-owned enterprises. Secondly, a set of investment efficiency evaluation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  16
    Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on Technical Indicators, Variational Mode Decomposition, and Support Vector Regression.Samuel Asante Gyamerah - 2021 - Complexity 2021:1-15.
    Due to the inherent chaotic and fractal dynamics in the price series of Bitcoin, this paper proposes a two-stage Bitcoin price prediction model by combining the advantage of variational mode decomposition and technical analysis. VMD eliminates the noise signals and stochastic volatility in the price data by decomposing the data into variational mode functions, while technical analysis uses statistical trends obtained from past trading activity and price changes to construct technical indicators. The support vector regression accepts input from a hybrid (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  30
    The predictive reframing of machine learning applications: good predictions and bad measurements.Alexander Martin Mussgnug - 2022 - European Journal for Philosophy of Science 12 (3):1-21.
    Supervised machine learning has found its way into ever more areas of scientific inquiry, where the outcomes of supervised machine learning applications are almost universally classified as predictions. I argue that what researchers often present as a mere terminological particularity of the field involves the consequential transformation of tasks as diverse as classification, measurement, or image segmentation into prediction problems. Focusing on the case of machine-learning enabled poverty prediction, I explore how reframing a measurement (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  54
    An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality.Gregory F. Cooper, Constantin F. Aliferis, Richard Ambrosino, John Aronis, Bruce G. Buchanon, Richard Caruana, Michael J. Fine, Clark Glymour, Geoffrey Gordon, Barbara H. Hanusa, Janine E. Janosky, Christopher Meek, Tom Mitchell, Thomas Richardson & Peter Spirtes - unknown
    This paper describes the application of eight statistical and machine-learning methods to derive computer models for predicting mortality of hospital patients with pneumonia from their findings at initial presentation. The eight models were each constructed based on 9847 patient cases and they were each evaluated on 4352 additional cases. The primary evaluation metric was the error in predicted survival as a function of the fraction of patients predicted to survive. This metric is useful in assessing a model’s potential (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Information Deprivation and Democratic Engagement.Adrian K. Yee - 2023 - Philosophy of Science 90 (5).
    There remains no consensus among social scientists as to how to measure and understand forms of information deprivation such as misinformation. Machine learning and statistical analyses of information deprivation typically contain problematic operationalizations which are too often biased towards epistemic elites' conceptions that can undermine their empirical adequacy. A mature science of information deprivation should include considerable citizen involvement that is sensitive to the value-ladenness of information quality and that doing so may improve the predictive and explanatory (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  41
    Can Robots Do Epidemiology? Machine Learning, Causal Inference, and Predicting the Outcomes of Public Health Interventions.Alex Broadbent & Thomas Grote - 2022 - Philosophy and Technology 35 (1):1-22.
    This paper argues that machine learning and epidemiology are on collision course over causation. The discipline of epidemiology lays great emphasis on causation, while ML research does not. Some epidemiologists have proposed imposing what amounts to a causal constraint on ML in epidemiology, requiring it either to engage in causal inference or restrict itself to mere projection. We whittle down the issues to the question of whether causal knowledge is necessary for underwriting predictions about the outcomes of public (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Egalitarian Machine Learning.Clinton Castro, David O’Brien & Ben Schwan - 2023 - Res Publica 29 (2):237–264.
    Prediction-based decisions, which are often made by utilizing the tools of machine learning, influence nearly all facets of modern life. Ethical concerns about this widespread practice have given rise to the field of fair machine learning and a number of fairness measures, mathematically precise definitions of fairness that purport to determine whether a given prediction-based decision system is fair. Following Reuben Binns (2017), we take ‘fairness’ in this context to be a placeholder for a variety of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  36
    Influence of context availability and soundness in predicting soil moisture using the Context-Aware Data Mining approach.Anca Avram, Oliviu Matei, Camelia-M. Pintea & Petrica C. Pop - 2023 - Logic Journal of the IGPL 31 (4):762-774.
    Knowing the level of quality from which the context is no longer valuable in a Context-Aware Data Mining (CADM) system is an important information. The main goal of this research is to study the variations of the predictions in case of different levels of noise and missing context data in practical scenarios for predicting soil moisture. The research has been performed on two locations from the Transylvanian Plain, Romania and two locations from Canada. The values predicted for the soil (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  15
    Faculty as Machine Monitors in Higher Education?Marvin J. Croy - 2000 - Bulletin of Science, Technology and Society 20 (2):106-114.
    Predictions concerning postindustrial society include that of workers serving as machine monitors. That concept is explored in this article in respect to faculty in higher education serving as monitors of computers that are executing instructional programs. Questions concerning changes in faculty roles and the control of educational quality are addressed. Alfred Bork’s vision of asynchronous learning systems is elaborated, and that alternative is compared to the concept of machine monitoring. It is concluded that monitoring in higher (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  28.  28
    Employing Machine Learning-Based Predictive Analytical Approaches to Classify Autism Spectrum Disorder Types.Muhammad Kashif Hanif, Naba Ashraf, Muhammad Umer Sarwar, Deleli Mesay Adinew & Reehan Yaqoob - 2022 - Complexity 2022:1-10.
    Autism spectrum disorder is an inherited long-living and neurological disorder that starts in the early age of childhood with complicated causes. Autism spectrum disorder can lead to mental disorders such as anxiety, miscommunication, and limited repetitive interest. If the autism spectrum disorder is detected in the early childhood, it will be very beneficial for children to enhance their mental health level. In this study, different machine and deep learning algorithms were applied to classify the severity of autism spectrum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  13
    Evaluation and analysis of teaching quality of university teachers using machine learning algorithms.Ying Zhong - 2023 - Journal of Intelligent Systems 32 (1).
    In order to better improve the teaching quality of university teachers, an effective method should be adopted for evaluation and analysis. This work studied the machine learning algorithms and selected the support vector machine (SVM) algorithm to evaluate teaching quality. First, the principles of selecting evaluation indexes were briefly introduced, and 16 evaluation indexes were selected from different aspects. Then, the SVM algorithm was used for evaluation. A genetic algorithm (GA)-SVM algorithm was designed and experimentally (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  30. Combining psychological models with machine learning to better predict people’s decisions.Avi Rosenfeld, Inon Zuckerman, Amos Azaria & Sarit Kraus - 2012 - Synthese 189 (S1):81-93.
    Creating agents that proficiently interact with people is critical for many applications. Towards creating these agents, models are needed that effectively predict people's decisions in a variety of problems. To date, two approaches have been suggested to generally describe people's decision behavior. One approach creates a-priori predictions about people's behavior, either based on theoretical rational behavior or based on psychological models, including bounded rationality. A second type of approach focuses on creating models based exclusively on observations of people's behavior. At (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  31.  27
    Machine learning classification of resting state functional connectivity predicts smoking status.Vani Pariyadath, Elliot A. Stein & Thomas J. Ross - 2014 - Frontiers in Human Neuroscience 8.
  32. Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.
    Machine learning algorithms may radically improve our ability to diagnose and treat disease. For moral, legal, and scientific reasons, it is essential that doctors and patients be able to understand and explain the predictions of these models. Scalable, customisable, and ethical solutions can be achieved by working together with relevant stakeholders, including patients, data scientists, and policy makers.
    Direct download  
     
    Export citation  
     
    Bookmark   19 citations  
  33. (1 other version)Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems.Owen C. King - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich, On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 265-282.
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  28
    Machine Learning in Psychometrics and Psychological Research.Graziella Orrù, Merylin Monaro, Ciro Conversano, Angelo Gemignani & Giuseppe Sartori - 2020 - Frontiers in Psychology 10:492685.
    Recent controversies about the level of replicability of behavioral research analyzed using statistical inference have cast interest in developing more efficient techniques for analyzing the results of psychological experiments. Here we claim that complementing the analytical workflow of psychological experiments with Machine Learning-based analysis will both maximize accuracy and minimize replicability issues. As compared to statistical inference, ML analysis of experimental data is model agnostic and primarily focused on prediction rather than inference. We also highlight some potential pitfalls (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  35.  45
    Machine learning and power relations.Jonne Maas - forthcoming - AI and Society.
    There has been an increased focus within the AI ethics literature on questions of power, reflected in the ideal of accountability supported by many Responsible AI guidelines. While this recent debate points towards the power asymmetry between those who shape AI systems and those affected by them, the literature lacks normative grounding and misses conceptual clarity on how these power dynamics take shape. In this paper, I develop a workable conceptualization of said power dynamics according to Cristiano Castelfranchi’s conceptual framework (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  36. Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   67 citations  
  37. Diachronic and synchronic variation in the performance of adaptive machine learning systems: the ethical challenges.Joshua Hatherley & Robert Sparrow - 2023 - Journal of the American Medical Informatics Association 30 (2):361-366.
    Objectives: Machine learning (ML) has the potential to facilitate “continual learning” in medicine, in which an ML system continues to evolve in response to exposure to new data over time, even after being deployed in a clinical setting. In this article, we provide a tutorial on the range of ethical issues raised by the use of such “adaptive” ML systems in medicine that have, thus far, been neglected in the literature. -/- Target audience: The target audiences for (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  38.  15
    Multi-scale Machine Learning Prediction of the Spread of Arabic Online Fake News.Fatima Aljwari, Wahaj Alkaberi, Areej Alshutayri, Eman Aldhahri, Nahla Aljojo & Omar Abouola - 2022 - Postmodern Openings 13 (1 Sup1):01-14.
    There are a lot of research studies that look at "fake news" from an Arabic online source, but they don't look at what makes those fake news spread. The threat grows, and at some point, it gets out of hand. That's why this paper is trying to figure out how to predict the features that make Arabic online fake news spread. It's using Naive Bayes, Logistic Regression, and Random forest of Machine Learning to do this. Online news stories (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39. On Predicting Recidivism: Epistemic Risk, Tradeoffs, and Values in Machine Learning.Justin B. Biddle - 2022 - Canadian Journal of Philosophy 52 (3):321-341.
    Recent scholarship in philosophy of science and technology has shown that scientific and technological decision making are laden with values, including values of a social, political, and/or ethical character. This paper examines the role of value judgments in the design of machine-learning systems generally and in recidivism-prediction algorithms specifically. Drawing on work on inductive and epistemic risk, the paper argues that ML systems are value laden in ways similar to human decision making, because the development and design of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  40.  38
    Tree-based machine learning algorithms in the Internet of Things environment for multivariate flood status prediction.Salama A. Mostafa, Bashar Ahmed Khalaf, Ahmed Mahmood Khudhur, Ali Noori Kareem & Firas Mohammed Aswad - 2021 - Journal of Intelligent Systems 31 (1):1-14.
    Floods are one of the most common natural disasters in the world that affect all aspects of life, including human beings, agriculture, industry, and education. Research for developing models of flood predictions has been ongoing for the past few years. These models are proposed and built-in proportion for risk reduction, policy proposition, loss of human lives, and property damages associated with floods. However, flood status prediction is a complex process and demands extensive analyses on the factors leading to the occurrence (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  41.  21
    Which firms opt for corporate social responsibility assurance? A machine learning prediction.Ephraim Kwashie Thompson & Samuel Buertey - 2023 - Business Ethics, the Environment and Responsibility 32 (2):599-611.
    On the background of voluntary assurances made by corporations in line with the assertions in their corporate social responsibility disclosures, we investigate which types of firms will obtain an independent certification of their corporate social responsibility disclosures. The study is based on firms listed on the Johannesburg Stock Exchange (JSE) from 2015 to 2019. Deviating from traditional regression approaches, we employ machine learning techniques and show that machine learning techniques obtain superior performance compared to traditional logistic (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Machine Learning and the Future of Scientific Explanation.Florian J. Boge & Michael Poznic - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (1):171-176.
    The workshop “Machine Learning: Prediction Without Explanation?” brought together philosophers of science and scholars from various fields who study and employ Machine Learning (ML) techniques, in order to discuss the changing face of science in the light of ML's constantly growing use. One major focus of the workshop was on the impact of ML on the concept and value of scientific explanation. One may speculate whether ML’s increased use in science exemplifies a paradigmatic turn towards mere (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  43.  47
    Testimonial injustice in medical machine learning.Giorgia Pozzi - 2023 - Journal of Medical Ethics 49 (8):536-540.
    Machine learning (ML) systems play an increasingly relevant role in medicine and healthcare. As their applications move ever closer to patient care and cure in clinical settings, ethical concerns about the responsibility of their use come to the fore. I analyse an aspect of responsible ML use that bears not only an ethical but also a significant epistemic dimension. I focus on ML systems’ role in mediating patient–physician relations. I thereby consider how ML systems may silence patients’ voices (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  44.  67
    Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning.Tomislav Pavlović, Flavio Azevedo, Koustav De, Julián C. Riaño-Moreno, Marina Maglić, Theofilos Gkinopoulos, Patricio Andreas Donnelly-Kehoe, César Payán-Gómez, Guanxiong Huang, Jaroslaw Kantorowicz, Michèle D. Birtel, Philipp Schönegger, Valerio Capraro, Hernando Santamaría-García, Meltem Yucel, Agustin Ibanez, Steve Rathje, Erik Wetter, Dragan Stanojević, Jan-Willem van Prooijen, Eugenia Hesse, Christian T. Elbaek, Renata Franc, Zoran Pavlović, Panagiotis Mitkidis, Aleksandra Cichocka, Michele Gelfand, Mark Alfano, Robert M. Ross, Hallgeir Sjåstad, John B. Nezlek, Aleksandra Cislak, Patricia Lockwood, Koen Abts, Elena Agadullina, David M. Amodio, Matthew A. J. Apps, John Jamir Benzon Aruta, Sahba Besharati, Alexander Bor, Becky Choma, William Cunningham, Waqas Ejaz, Harry Farmer, Andrej Findor, Biljana Gjoneska, Estrella Gualda, Toan L. D. Huynh, Mostak Ahamed Imran, Jacob Israelashvili & Elena Kantorowicz-Reznichenko - forthcoming - Proceedings of the National Academy of Sciences: Nexus.
    At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multi-national data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Big Data Analytics in Healthcare: Exploring the Role of Machine Learning in Predicting Patient Outcomes and Improving Healthcare Delivery.Federico Del Giorgio Solfa & Fernando Rogelio Simonato - 2023 - International Journal of Computations Information and Manufacturing (Ijcim) 3 (1):1-9.
    Healthcare professionals decide wisely about personalized medicine, treatment plans, and resource allocation by utilizing big data analytics and machine learning. To guarantee that algorithmic recommendations are impartial and fair, however, ethical issues relating to prejudice and data privacy must be taken into account. Big data analytics and machine learning have a great potential to disrupt healthcare, and as these technologies continue to evolve, new opportunities to reform healthcare and enhance patient outcomes may arise. In order to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46.  36
    Privacy and surveillance concerns in machine learning fall prediction models: implications for geriatric care and the internet of medical things.Russell Yang - forthcoming - AI and Society:1-5.
    Fall prediction using machine learning has become one of the most fruitful and socially relevant applications of computer vision in gerontological research. Since its inception in the early 2000s, this subfield has proliferated into a robust body of research underpinned by various machine learning algorithms (including neural networks, support vector machines, and decision trees) as well as statistical modeling approaches (Markov chains, Gaussian mixture models, and hidden Markov models). Furthermore, some advancements have been translated into commercial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Machines Learn Better with Better Data Ontology: Lessons from Philosophy of Induction and Machine Learning Practice.Dan Li - 2023 - Minds and Machines 33 (3):429-450.
    As scientists start to adopt machine learning (ML) as one research tool, the security of ML and the knowledge generated become a concern. In this paper, I explain how supervised ML can be improved with better data ontology, or the way we make categories and turn information into data. More specifically, we should design data ontology in such a way that is consistent with the knowledge that we have about the target phenomenon so that such ontology can help (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48.  14
    Predicting Student Performance Using Machine Learning in fNIRS Data.Amanda Yumi Ambriola Oku & João Ricardo Sato - 2021 - Frontiers in Human Neuroscience 15.
    Increasing student involvement in classes has always been a challenge for teachers and school managers. In online learning, some interactivity mechanisms like quizzes are increasingly used to engage students during classes and tasks. However, there is a high demand for tools that evaluate the efficiency of these mechanisms. In order to distinguish between high and low levels of engagement in tasks, it is possible to monitor brain activity through functional near-infrared spectroscopy. The main advantages of this technique are portability, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  35
    Applying machine learning methods to quantify emotional experience in installation art.Sofia Vlachou & Michail Panagopoulos - 2023 - Technoetic Arts 21 (1):53-72.
    Aesthetic experience is original, dynamic and ever-changing. This article covers three research questions (RQs) concerning how immersive installation artworks can elicit emotions that may contribute to their popularity. Based on Yayoi Kusama’s and Peter Kogler’s kaleidoscopic rooms, this study aims to predict the emotions of visitors of immersive installation art based on their Twitter activity. As indicators, we employed the total number of likes, comments, retweets, followers, followings, the average of tweets per user, and emotional response. According to our evaluation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  18
    Toward a Machine Learning Predictive-Oriented Approach to Complement Explanatory Modeling. An Application for Evaluating Psychopathological Traits Based on Affective Neurosciences and Phenomenology.Pasquale Dolce, Davide Marocco, Mauro Nelson Maldonato & Raffaele Sperandeo - 2020 - Frontiers in Psychology 11.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 990