Results for 'infinite computation, quantum computer, quantum Turing nachine, quantum entanglement, qubit, natural argument'

969 found
Order:
  1. Natural Argument by a Quantum Computer.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (30):1-8.
    Natural argument is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary natural arguments in any data. That ability of natural argument is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2. A Quantum Computer in a 'Chinese Room'.Vasil Penchev - 2020 - Mechanical Engineering eJournal (Elsevier: SSRN) 3 (155):1-8.
    Pattern recognition is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary patterns in any data. That ability of universal pattern recognition is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4. Квантовият компютър: квантовите ординали и типовете алгоритмична неразрешимост.Vasil Penchev - 2005 - Philosophical Alternatives 14 (6):59-71.
    A definition of quantum computer is supposed: as a countable set of Turing machines on the ground of: quantum parallelism, reversibility, entanglement. Qubit is the set of all the i–th binary location cells transforming in parallel by unitary matrices. The Church thesis is suggested in the form relevat to quantum computer. The notion of the non–finite (but not infinite) potency of a set is introduced .
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  50
    Quantum Computation and Logic: How Quantum Computers Have Inspired Logical Investigations.Giuseppe Sergioli, Roberto Leporini, Roberto Giuntini & Maria Dalla Chiara - 2018 - Cham, Switzerland: Springer Verlag.
    This book provides a general survey of the main concepts, questions and results that have been developed in the recent interactions between quantum information, quantum computation and logic. Divided into 10 chapters, the books starts with an introduction of the main concepts of the quantum-theoretic formalism used in quantum information. It then gives a synthetic presentation of the main “mathematical characters” of the quantum computational game: qubits, quregisters, mixtures of quregisters, quantum logical gates. Next, (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  6. The GOOGLE and XPRIZE award for how to use quantum computers practically: The problem of the “P” versus “NP” outputs of any quantum computer and the pathway for its resolving.Vasil Penchev - 2025 - Quantum Information Ejournal (Elsevier: Ssrn) 4 (26):1-80.
    The GOOGLE and XPRIZE $5,000,000 for the practical and socially useful utilization of the quantum computer is the starting point for ontomathematical reflections for what it can really serve. Its “output by measurement” is opposed to the conjecture for a coherent ray able alternatively to deliver the ultimate result of any quantum calculation immediately as a Dirac -function therefore accomplishing the transition of the sequence of increasingly narrow probability density distributions to their limit. The GOOGLE and XPRIZE problem’s (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. The Completeness: From Henkin's Proposition to Quantum Computer.Vasil Penchev - 2018 - Логико-Философские Штудии 16 (1-2):134-135.
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all (...) sets. However, only Henkin's proposition equivalent to an internal position to infinity is consistent . This can be retraced back to set theory and its axioms, where that of choice is a key. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that some essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, these phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A special kind of invariance to the axiom of choice shared by quantum mechanics is discussed to be involved that border between the completeness and incompleteness of infinity in a consistent way. The so-called paradox of Albert Einstein, Boris Podolsky, and Nathan Rosen is interpreted entirely in the same terms only of set theory. Quantum computer can demonstrate especially clearly the privilege of the internal position, or " observer'' , or "user" to infinity implied by Henkin's proposition as the only consistent ones as to infinity. An essential area of contemporary knowledge may be synthesized from a single viewpoint. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9. Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Entanglement as a Semantic Resource.Maria Luisa Dalla Chiara, Roberto Giuntini, Antonio Ledda, Roberto Leporini & Giuseppe Sergioli - 2010 - Foundations of Physics 40 (9-10):1494-1518.
    The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits (quregisters) or, more generally, mixtures of quregisters (qumixes), while (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The implications of a cosmological information bound for complexity, quantum information and the nature of physical law.Paul Davies - unknown
    The finite age of the universe and the existence of cosmological horizons provides a strong argument that the observable universe represents a finite causal region with finite material and informational resources. A similar conclusion follows from the holographic principle. In this paper I address the question of whether the cosmological information bound has implications for fundamental physics. Orthodox physics is based on Platonism: the laws are treated as infinitely precise, perfect, immutable mathematical relationships that transcend the physical universe and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Computation and hypercomputation.Mike Stannett - 2003 - Minds and Machines 13 (1):115-153.
    Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computation in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification of any experiment capable of refuting hypercomputation. We consider the implications of relativistic algorithms capable of solving the (Turing) Halting Problem. We also reject as a fallacy the argument that hypercomputation has no relevance because non-computable values are indistinguishable (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  14. (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  15. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   95 citations  
  17.  11
    Physics, mathematics, and all that quantum jazz.Shu Tanaka, Masamitsu Bando & Utkan Gungordu (eds.) - 2014 - New Jersey: World Scientific.
    My life as a quantum physicist / M. Nakahara -- A review on operator quantum error correction - Dedicated to Professor Mikio Nakahara on the occasion of his 60th birthday / C.-K. Li, Y.-T. Poon and N.-S. Sze -- Implementing measurement operators in linear optical and solid-state qubits / Y. Ota, S. Ashhab and F. Nori -- Fast and accurate simulation of quantum computing by multi-precision MPS: Recent development / A. Saitoh -- Entanglement properties of a (...) lattice-gas model on square and triangular ladders / S. Tanaka, R. Tamura and H. Katsura -- On signal amplification from weak-value amplification / Y. Shikano -- Topological protection of quantum information / K. Fujii -- Quantum annealing with antiferromagnetic fluctuations for mean-field models / Y. Seki and H. Nishimori -- A method to change phase transition nature - Toward annealing methods / R. Tamura and S. Tanaka -- Computational analysis of the first stage of the photosynthetic system, the light-dependent reaction, by quantum chemical simulation method / M. Tada-Umezaki -- Two-qubit gate operation on selected nearest neighboring qubits in a neutral atom quantum computer / E. Hosseini Lapasar... [et al.] -- A simple operator quantum error correction scheme avoiding fully correlated errors / C. Bagnasco, Y. Kondo and M. Nakahara -- Black hole predictability, classical and quantum / A. Ishibashi -- Classical field simulation of finite-temperature Bose gases / T. Sato -- Atomic quantum simulations of lattice gauge theory: Effect of gauge symmetry breaking / K. Kasamatsu, I. Ichinose and T. Matsui -- Recursive construction of noiseless subsystem for qudits / U. Gungordu... [et al.] -- Composite quantum gates for precise quantum control / M. Bando... [et al.] -- New formulation of statistical mechanics using thermal pure quantum states / S. Sugiura and A. Shimizu -- Thermodynamics in unitary time evolution / T. N. Ikeda -- Second law of thermodynamics with QC-mutual information / T. Sagawa. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18. The argument against quantum computers, the quantum laws of nature, and Google's supremacy claims.Gil Kalai - 2025 - In Eliezer Rabinovici, Laws: rigidity and dynamics. Hackensack, NJ: World Scientific Publishing Co. Pte..
     
    Export citation  
     
    Bookmark  
  19. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  36
    The Quantum Field Theory (QFT) Dual Paradigm in Fundamental Physics and the Semantic Information Content and Measure in Cognitive Sciences.Gianfranco Basti - 2017 - In Gordana Dodig-Crnkovic & Raffaela Giovagnoli, Representation of Reality: Humans, Other Living Organism and Intelligent Machines. Heidelberg: Springer.
    In this paper we explore the possibility of giving a justification of the “semantic information” content and measure, in the framework of the recent coalgebraic approach to quantum systems and quantum computation, extended to QFT systems. In QFT, indeed, any quantum system has to be considered as an “open” system, because it is always interacting with the background fluctuations of the quantum vacuum. Namely, the Hamiltonian in QFT always includes the quantum system and its inseparable (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21. A quantum computer only needs one universe.A. M. Steane - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):469-478.
    The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to ''perform many computations simultaneously'' except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel universes. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  22. Decryption and Quantum Computing: Seven Qubits and Counting.John G. Cramer - unknown
    Alternate View Column AV-112 Keywords: quantum mechanics entangled states computer computing 7 qubits prime number factoring Schor algorithm NMR nuclear magnetic resonance fast parallel decryption coherence wave-function collapse many-worlds transactional interpretation Published in the June-2002 issue of Analog Science Fiction & Fact Magazine ; This column was written and submitted 12/19/2001 and is copyrighted ©2001 by John G. Cramer.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  47
    Book Review: Ad Infinitum: The Ghost in Turing's Machine: Taking God Out of Mathematics and Putting the Body Back In. [REVIEW]Tony E. Jackson - 1995 - Philosophy and Literature 19 (2):390-391.
    In lieu of an abstract, here is a brief excerpt of the content:Reviewed by:Ad Infinitum: The Ghost in Turing’s Machine: Taking God Out of Mathematics and Putting the Body Back InTony E. JacksonAd Infinitum: The Ghost in Turing’s Machine: Taking God Out of Mathematics and Putting the Body Back In, by Brian Rotman; xii & 203 pp. Stanford: Stanford University Press, 1993, $39.50 cloth, $12.95 paper.Brian Rotman’s book attempts to pull mathematics—the last, most solid home of metaphysical thought—off (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  24. Quantum Gravity on a Quantum Computer?Achim Kempf - 2014 - Foundations of Physics 44 (5):472-482.
    EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of (...) gravity. (shrink)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  30
    Quantum Entanglement, Metaphysics of Relations, Dispositionalism and Е. J. Lowe's Ontology.Nikita Golovko - 2021 - Siberian Journal of Philosophy 19 (2):8-35.
    The paper aims to make а fair supplement to the concept of "metaphysics of relations" (bу М. Esfeld) with а coгrect coгresponding interpretation of the dispositional natшe of characteristics within Е. J. Lowe's ontology. А reasoning from science to philosophy leads М. Esfeld to the conclusion that "quantum entanglement understood in terms of non-separability of states speaks for the metaphysics of relations that denies the presence of intrinsic characteristics of the related systems". The same naturalistic argument provides rationale (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26. (1 other version)Infinite time Turing machines.Joel David Hamkins & Andy Lewis - 2000 - Journal of Symbolic Logic 65 (2):567-604.
    Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
    Direct download (20 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  27. Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  28.  41
    Every incomplete computably enumerable truth-table degree is branching.Peter A. Fejer & Richard A. Shore - 2001 - Archive for Mathematical Logic 40 (2):113-123.
    If r is a reducibility between sets of numbers, a natural question to ask about the structure ? r of the r-degrees containing computably enumerable sets is whether every element not equal to the greatest one is branching (i.e., the meet of two elements strictly above it). For the commonly studied reducibilities, the answer to this question is known except for the case of truth-table (tt) reducibility. In this paper, we answer the question in the tt case by showing (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30.  53
    Dendritic encoding: An alternative to temporal synaptic coding of conscious experience.Nancy J. Woolf - 1999 - Consciousness and Cognition 8 (4):447-454.
    In this commentary, arguments are made for a dendritic code being preferable to a temporal synaptic code as a model of conscious experience. A temporal firing pattern is a product of an ongoing neural computation; hence, it is based on a neural algorithm and an algorithm may not provide the most suitable model for conscious experience. Reiteration of a temporal firing code as suggested in a preceding article (Helekar, 1999) does not necessarily improve the situation. The alternative model presented here (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  32.  37
    Theory of Quantum Computation and Philosophy of Mathematics. Part II.Krzysztof Wójtowicz - 2019 - Logic and Logical Philosophy 28 (1):173-193.
    In the article, the philosophical significance of quantum computation theory for philosophy of mathematics is discussed. In particular, I examine the notion of “quantum-assisted proof” (QAP); the discussion sheds light on the problem of the nature of mathematical proof; the potential empirical aspects of mathematics and the realism-antirealism debate (in the context of the indispensability argument). I present a quasi-empiricist account of QAP’s, and discuss the possible impact on the discussions centered around the Enhanced Indispensabity Argument (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33. Quantum Entanglement Through Quaternions.J. P. Singh - 2009 - Apeiron: Studies in Infinite Nature 16 (4):491.
  34.  88
    Weaker variants of infinite time Turing machines.Matteo Bianchetti - 2020 - Archive for Mathematical Logic 59 (3-4):335-365.
    Infinite time Turing machines represent a model of computability that extends the operations of Turing machines to transfinite ordinal time by defining the content of each cell at limit steps to be the lim sup of the sequences of previous contents of that cell. In this paper, we study a computational model obtained by replacing the lim sup rule with an ‘eventually constant’ rule: at each limit step, the value of each cell is defined if and only (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35.  35
    An extension of Chaitin's halting probability Ω to a measurement operator in an infinite dimensional quantum system.Kohtaro Tadaki - 2006 - Mathematical Logic Quarterly 52 (5):419-438.
    This paper proposes an extension of Chaitin's halting probability Ω to a measurement operator in an infinite dimensional quantum system. Chaitin's Ω is defined as the probability that the universal self-delimiting Turing machine U halts, and plays a central role in the development of algorithmic information theory. In the theory, there are two equivalent ways to define the program-size complexity H of a given finite binary string s. In the standard way, H is defined as the length (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36. On the Necessity of Entanglement for the Explanation of Quantum Speedup.Michael Cuffaro - manuscript
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  37.  56
    Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer. [REVIEW]Robin Blume-Kohout, Carlton M. Caves & Ivan H. Deutsch - 2002 - Foundations of Physics 32 (11):1641-1670.
    The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the effective number of degrees of freedom in the computer must grow nearly linearly with the number of qubits (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  56
    Computable Diagonalizations and Turing’s Cardinality Paradox.Dale Jacquette - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):239-262.
    A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39. On the Role of Quantum Computing in Grounding Morphological Complexity.Martina Properzi - 2018 - International Journal of Current Advanced Research 7 (9):15444-15448.
    In this Short Communication we will discuss the role played by quantum computing within the emerging morphological paradigm in the unconventional natural computing. We intend merely introduce the main reasons why a coherent representation of Universality in morphological natural computing needs to be grounded on a version of Quantum Field Theory independent, in many senses, from the Quantum Mechanics formalism in fundamental physics, namely formulated as a thermal field theory. This theory describes the “emergence” of (...)
    No categories
     
    Export citation  
     
    Bookmark  
  40.  48
    Engineering Entanglement, Conceptualizing Quantum Information.Chen-Pang Yeang - 2011 - Annals of Science 68 (3):325-350.
    Summary Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum computers and employing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41. How to pass a Turing test: Syntactic semantics, natural-language understanding, and first-person cognition.William J. Rapaport - 2000 - Journal of Logic, Language, and Information 9 (4):467-490.
    I advocate a theory of syntactic semantics as a way of understanding how computers can think (and how the Chinese-Room-Argument objection to the Turing Test can be overcome): (1) Semantics, considered as the study of relations between symbols and meanings, can be turned into syntax – a study of relations among symbols (including meanings) – and hence syntax (i.e., symbol manipulation) can suffice for the semantical enterprise (contra Searle). (2) Semantics, considered as the process of understanding one domain (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  42.  20
    Computational complexity on computable metric spaces.Klaus Weirauch - 2003 - Mathematical Logic Quarterly 49 (1):3-21.
    We introduce a new Turing machine based concept of time complexity for functions on computable metric spaces. It generalizes the ordinary complexity of word functions and the complexity of real functions studied by Ko [19] et al. Although this definition of TIME as the maximum of a generally infinite family of numbers looks straightforward, at first glance, examples for which this maximum exists seem to be very rare. It is the main purpose of this paper to prove that, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  43. Building infinite machines.E. B. Davies - 2001 - British Journal for the Philosophy of Science 52 (4):671-682.
    We describe in some detail how to build an infinite computing machine within a continuous Newtonian universe. The relevance of our construction to the Church-Turing thesis and the Platonist-Intuitionist debate about the nature of mathematics is also discussed.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  44. Hypercomputation and the Physical Church‐Turing Thesis.Paolo Cotogno - 2003 - British Journal for the Philosophy of Science 54 (2):181-223.
    A version of the Church-Turing Thesis states that every effectively realizable physical system can be simulated by Turing Machines (‘Thesis P’). In this formulation the Thesis appears to be an empirical hypothesis, subject to physical falsification. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non-well-founded, analog, quantum, and retrocausal computation. The conclusions are that these models reduce to supertasks, i.e. infinite computation, and that even supertasks are no solution for recursive incomputability. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  45. The Church-Turing ‘Thesis’ as a Special Corollary of Gödel’s Completeness Theorem.Saul A. Kripke - 2013 - In B. J. Copeland, C. Posy & O. Shagrir, Computability: Gödel, Turing, Church, and beyond. MIT Press.
    Traditionally, many writers, following Kleene (1952), thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing’s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis, what Turing (1936) calls “argument I,” has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  46. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  47. A Classical Analogy of Entanglement.Robert J. C. Spreeuw - 1998 - Foundations of Physics 28 (3):361-374.
    A classical analogy of quantum mechanical entanglement is presented, using classical light beams. The analogy can be pushed a long way, only to reach its limits when we try to represent multiparticle, or nonlocal, entanglement. This demonstrates that the latter is of exclusive quantum nature. On the other hand, the entanglement of different degrees of freedom of the same particle might be considered classical. The classical analog cannot replace Einstein-Podolsky-Rosen type experiments, nor can it be used to build (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  48. Accelerating Turing machines.B. Jack Copeland - 2002 - Minds and Machines 12 (2):281-300.
    Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of contains n consecutive 7s, for any n; solve the Turing-machine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and the (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  49. The Architecture of Mind as a Network of Networks of Natural Computational Processes.Gordana Dodig-Crnkovic - 2015 - Philosophies 1 (1):111--125.
    In discussions regarding models of cognition, the very mention of “computationalism” often incites reactions against the insufficiency of the Turing machine model, its abstractness, determinism, the lack of naturalist foundations, triviality and the absence of clarity. None of those objections, however, concerns models based on natural computation or computing nature, where the model of computation is broader than symbol manipulation or conventional models of computation. Computing nature consists of physical structures that form layered computational architecture, with computation processes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 969