Results for 'Set theory'

921 found
Order:
  1.  68
    Set Theory, Logic and Their Limitations.Moshe Machover - 1996 - Cambridge University Press.
    This is an introduction to set theory and logic that starts completely from scratch. The text is accompanied by many methodological remarks and explanations.
    Direct download  
     
    Export citation  
     
    Bookmark   16 citations  
  2. Naïve set theory is innocent!A. Weir - 1998 - Mind 107 (428):763-798.
    Naive set theory, as found in Frege and Russell, is almost universally believed to have been shown to be false by the set-theoretic paradoxes. The standard response has been to rank sets into one or other hierarchy. However it is extremely difficult to characterise the nature of any such hierarchy without falling into antinomies as severe as the set-theoretic paradoxes themselves. Various attempts to surmount this problem are examined and criticised. It is argued that the rejection of naive set (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  3.  82
    A set theory with support for partial functions.William M. Farmer & Joshua D. Guttman - 2000 - Studia Logica 66 (1):59-78.
    Partial functions can be easily represented in set theory as certain sets of ordered pairs. However, classical set theory provides no special machinery for reasoning about partial functions. For instance, there is no direct way of handling the application of a function to an argument outside its domain as in partial logic. There is also no utilization of lambda-notation and sorts or types as in type theory. This paper introduces a version of von-Neumann-Bernays-Gödel set theory for (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  84
    Finitist set theory in ontological modeling.Avril Styrman & Aapo Halko - 2018 - Applied ontology 13 (2):107-133.
    This article introduces finitist set theory (FST) and shows how it can be applied in modeling finite nested structures. Mereology is a straightforward foundation for transitive chains of part-whole relations between individuals but is incapable of modeling antitransitive chains. Traditional set theories are capable of modeling transitive and antitransitive chains of relations, but due to their function as foundations of mathematics they come with features that make them unnecessarily difficult in modeling finite structures. FST has been designed to function (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  25
    Algebraic Set Theory and the Effective Topos.Claire Kouwenhoven-Gentil & Jaap van Oosten - 2005 - Journal of Symbolic Logic 70 (3):879 - 890.
    Following the book Algebraic Set Theory from André Joyal and leke Moerdijk [8], we give a characterization of the initial ZF-algebra, for Heyting pretoposes equipped with a class of small maps. Then, an application is considered (the effective topos) to show how to recover an already known model (McCarty [9]).
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6. The non-triviality of dialectical set theory.Ross T. Brady - 1989 - In Graham Priest, Richard Routley & Jean Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent. Philosophia Verlag. pp. 437--470.
     
    Export citation  
     
    Bookmark   54 citations  
  7.  35
    Quantum set theory: Transfer Principle and De Morgan's Laws.Masanao Ozawa - 2021 - Annals of Pure and Applied Logic 172 (4):102938.
    In quantum logic, introduced by Birkhoff and von Neumann, De Morgan's Laws play an important role in the projection-valued truth value assignment of observational propositions in quantum mechanics. Takeuti's quantum set theory extends this assignment to all the set-theoretical statements on the universe of quantum sets. However, Takeuti's quantum set theory has a problem in that De Morgan's Laws do not hold between universal and existential bounded quantifiers. Here, we solve this problem by introducing a new truth value (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  52
    Set theory, model theory, and computability theory.Wilfrid Hodges - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press. pp. 471.
    This chapter surveys set theory, model theory, and computability theory: how they first emerged from the foundations of mathematics, and how they have developed since. There are any amounts of mathematical technicalities in the background, but the chapter highlights those themes that have some philosophical resonance.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  9. The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory.Kurt Gödel - 1940 - Princeton university press;: Princeton University Press;. Edited by George William Brown.
    Kurt Gödel, mathematician and logician, was one of the most influential thinkers of the twentieth century. Gödel fled Nazi Germany, fearing for his Jewish wife and fed up with Nazi interference in the affairs of the mathematics institute at the University of Göttingen. In 1933 he settled at the Institute for Advanced Study in Princeton, where he joined the group of world-famous mathematicians who made up its original faculty. His 1940 book, better known by its short title, The Consistency of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   63 citations  
  10.  65
    The simple consistency of a set theory based on the logic ${\rm CSQ}$.Ross T. Brady - 1983 - Notre Dame Journal of Formal Logic 24 (4):431-449.
  11.  58
    Naive Set Theory and Nontransitive Logic.David Ripley - 2015 - Review of Symbolic Logic 8 (3):553-571.
    In a recent series of papers, I and others have advanced new logical approaches to familiar paradoxes. The key to these approaches is to accept full classical logic, and to accept the principles that cause paradox, while preventing trouble by allowing a certain sort ofnontransitivity. Earlier papers have treated paradoxes of truth and vagueness. The present paper will begin to extend the approach to deal with the familiar paradoxes arising in naive set theory, pointing out some of the promises (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  12. Higher set theory.Harvey Friedman - manuscript
    Russell’s way out of his paradox via the impre-dicative theory of types has roughly the same logical power as Zermelo set theory - which supplanted it as a far more flexible and workable axiomatic foundation for mathematics. We discuss some new formalisms that are conceptually close to Russell, yet simpler, and have the same logical power as higher set theory - as represented by the far more powerful Zermelo-Frankel set theory and beyond. END.
     
    Export citation  
     
    Bookmark   3 citations  
  13.  33
    (1 other version)On strong forms of reflection in set theory.Sy-David Friedman & Radek Honzik - 2016 - Mathematical Logic Quarterly 62 (1-2):52-58.
    In this paper we review the most common forms of reflection and introduce a new form which we call sharp‐generated reflection. We argue that sharp‐generated reflection is the strongest form of reflection which can be regarded as a natural generalization of the Lévy reflection theorem. As an application we formulate the principle sharp‐maximality with the corresponding hypothesis. The statement is an analogue of the (Inner Model Hypothesis, introduced in ) which is compatible with the existence of large cardinals.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  14.  81
    A Formalization of Set Theory Without Variables.István Németi - 1988 - American Mathematical Soc..
    Completed in 1983, this work culminates nearly half a century of the late Alfred Tarski's foundational studies in logic, mathematics, and the philosophy of science. Written in collaboration with Steven Givant, the book appeals to a very broad audience, and requires only a familiarity with first-order logic. It is of great interest to logicians and mathematicians interested in the foundations of mathematics, but also to philosophers interested in logic, semantics, algebraic logic, or the methodology of the deductive sciences, and to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  15. Set Theory and its Philosophy: A Critical Introduction.Michael D. Potter - 2004 - Oxford, England: Oxford University Press.
    Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   88 citations  
  16. Does set theory really ground arithmetic truth?Alfredo Roque Freire - manuscript
    We consider the foundational relation between arithmetic and set theory. Our goal is to criticize the construction of standard arithmetic models as providing grounds for arithmetic truth (even in a relative sense). Our method is to emphasize the incomplete picture of both theories and treat models as their syntactical counterparts. Insisting on the incomplete picture will allow us to argue in favor of the revisability of the standard model interpretation. We then show that it is hopeless to expect that (...)
     
    Export citation  
     
    Bookmark  
  17.  47
    Arithmetical set theory.Paul Strauss - 1991 - Studia Logica 50 (2):343 - 350.
    It is well known that number theory can be interpreted in the usual set theories, e.g. ZF, NF and their extensions. The problem I posed for myself was to see if, conversely, a reasonably strong set theory could be interpreted in number theory. The reason I am interested in this problem is, simply, that number theory is more basic or more concrete than set theory, and hence a more concrete foundation for mathematics. A partial solution (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  18. Set Theory, Type Theory, and Absolute Generality.Salvatore Florio & Stewart Shapiro - 2014 - Mind 123 (489):157-174.
    In light of the close connection between the ontological hierarchy of set theory and the ideological hierarchy of type theory, Øystein Linnebo and Agustín Rayo have recently offered an argument in favour of the view that the set-theoretic universe is open-ended. In this paper, we argue that, since the connection between the two hierarchies is indeed tight, any philosophical conclusions cut both ways. One should either hold that both the ontological hierarchy and the ideological hierarchy are open-ended, or (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  19.  49
    Set theory generated by Abelian group theory.Paul C. Eklof - 1997 - Bulletin of Symbolic Logic 3 (1):1-16.
    Introduction. This survey is intended to introduce to logicians some notions, methods and theorems in set theory which arose—largely through the work of Saharon Shelah—out of attempts to solve problems in abelian group theory, principally the Whitehead problem and the closely related problem of the existence of almost free abelian groups. While Shelah's first independence result regarding the Whitehead problem used established set-theoretical methods, his later work required new ideas; it is on these that we focus. We emphasize (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  20.  21
    Finiteness classes arising from Ramsey-theoretic statements in set theory without choice.Joshua Brot, Mengyang Cao & David Fernández-Bretón - 2021 - Annals of Pure and Applied Logic 172 (6):102961.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  16
    Stability theory and set existence axioms.Victor Harnik - 1985 - Journal of Symbolic Logic 50 (1):123-137.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  29
    Introduction to axiomatic set theory.Gaisi Takeuti - 1971 - New York,: Springer Verlag. Edited by Wilson M. Zaring.
    In 1963, the first author introduced a course in set theory at the University of Illinois whose main objectives were to cover Godel's work on the con sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH), and Cohen's work on the independence of the AC and the GCH. Notes taken in 1963 by the second author were taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  23.  25
    Proof Theory as an Analysis of Impredicativity( New Developments in Logic: Proof-Theoretic Ordinals and Set-Theoretic Ordinals).Ryota Akiyoshi - 2012 - Journal of the Japan Association for Philosophy of Science 39 (2):93-107.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. On the Consistency of ZF Set Theory and Its Large Cardinal Extensions.Luca Bellotti - 2006 - Epistemologia 29 (1):41-60.
  25.  26
    Substandard models of finite set theory.Laurence Kirby - 2010 - Mathematical Logic Quarterly 56 (6):631-642.
    A survey of the isomorphic submodels of Vω, the set of hereditarily finite sets. In the usual language of set theory, Vω has 2ℵ0 isomorphic submodels. But other set-theoretic languages give different systems of submodels. For example, the language of adjunction allows only countably many isomorphic submodels of Vω.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Ontology, Set Theory, and the Paraphrase Challenge.Jared Warren - 2021 - Journal of Philosophical Logic 50 (6):1231-1248.
    In many ontological debates there is a familiar challenge. Consider a debate over X s. The “small” or anti-X side tries to show that they can paraphrase the pro-X or “big” side’s claims without any loss of expressive power. Typically though, when the big side adds whatever resources the small side used in their paraphrase, the symmetry breaks down. The big side plus small’s resources is a more expressively powerful and thus more theoretically fruitful theory. In this paper, I (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Cohen and set theory.Akihiro Kanamori - 2008 - Bulletin of Symbolic Logic 14 (3):351-378.
    We discuss the work of Paul Cohen in set theory and its influence, especially the background, discovery, development of forcing.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  28.  33
    Non Standard Regular Finite Set Theory.Stefano Baratella & Ruggero Ferro - 1995 - Mathematical Logic Quarterly 41 (2):161-172.
    We propose a set theory, called NRFST, in which the Cantorian axiom of infinity is negated, and a new notion of infinity is introduced via non standard methods, i. e. via adequate notions of standard and internal, two unary predicates added to the language of ZF. After some initial results on NRFST, we investigate its relative consistency with respect to ZF and Kawai's WNST.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Set theory and physics.K. Svozil - 1995 - Foundations of Physics 25 (11):1541-1560.
    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30. A Discussion on Finite Quasi-cardinals in Quasi-set Theory.Jonas Rafael Becker Arenhart - 2011 - Foundations of Physics 41 (8):1338-1354.
    Quasi-set theory Q is an alternative set-theory designed to deal mathematically with collections of indistinguishable objects. The intended interpretation for those objects is the indistinguishable particles of non-relativistic quantum mechanics, under one specific interpretation of that theory. The notion of cardinal of a collection in Q is treated by the concept of quasi-cardinal, which in the usual formulations of the theory is introduced as a primitive symbol, since the usual means of cardinal definition fail for collections (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31.  31
    Axiomatic Set Theory.Foundations of Set Theory.Paul Bernays, Abraham A. Fraenkel & Yehoshua Bar-Hillel - 1962 - Philosophical Review 71 (2):268-269.
  32.  21
    Models of ZF-set theory.Ulrich Felgner - 1971 - New York,: Springer Verlag.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  33. Set-Theoretic Absoluteness and the Revision Theory.Philip Welch - 2003 - Bulletin of Symbolic Logic 9 (2):235-237.
  34.  73
    Sharon Berry.*A Logical Foundation for Potentialist Set Theory.Chris Scambler - 2023 - Philosophia Mathematica 31 (2):277-282.
    This book offers a foundation for mathematics grounded in a collection of axioms for logical possibility in a first-order language. The offered foundation is ar.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  46
    Cantorian Set Theory and Limitation of Size.Michael Hallett - 1984 - Oxford, England: Clarendon Press.
    This volume presents the philosophical and heuristic framework Cantor developed and explores its lasting effect on modern mathematics. "Establishes a new plateau for historical comprehension of Cantor's monumental contribution to mathematics." --The American Mathematical Monthly.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   70 citations  
  36.  24
    Elementary Constructive Operational Set Theory.Andrea Cantini & Laura Crosilla - 2010 - In Ralf Schindler (ed.), Ways of Proof Theory. De Gruyter. pp. 199-240.
    We introduce an operational set theory in the style of [5] and [16]. The theory we develop here is a theory of constructive sets and operations. One motivation behind constructive operational set theory is to merge a constructive notion of set ([1], [2]) with some aspects which are typical of explicit mathematics [14]. In particular, one has non-extensional operations (or rules) alongside extensional constructive sets. Operations are in general partial and a limited form of self{application is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  33
    (2 other versions)Set Theory and its Logic.Willard van Orman Quine - 1963 - Cambridge, MA, USA: Harvard University Press.
    This is an extensively revised edition of Mr. Quine's introduction to abstract set theory and to various axiomatic systematizations of the subject. The treatment of ordinal numbers has been strengthened and much simplified, especially in the theory of transfinite recursions, by adding an axiom and reworking the proofs. Infinite cardinals are treated anew in clearer and fuller terms than before. Improvements have been made all through the book; in various instances a proof has been shortened, a theorem strengthened, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  38.  10
    Set theoretic foundations for a theory of human memory.Hans Colonius - 1996 - Behavioral and Brain Sciences 19 (3):559.
  39.  25
    I. Grattan-Guinness (Ed.). From Calculus to Set Theory, 1630–1910: An Introductory History. London: Gerald Duckworth and Co. (1980), 306 pp., $12.00.Roger Jones - 1984 - Philosophy of Science 51 (3):519-522.
  40. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  41.  29
    Extending constructive operational set theory by impredicative principles.Andrea Cantini - 2011 - Mathematical Logic Quarterly 57 (3):299-322.
    We study constructive set theories, which deal with operations applying both to sets and operations themselves. Our starting point is a fully explicit, finitely axiomatized system ESTE of constructive sets and operations, which was shown in 10 to be as strong as PA. In this paper we consider extensions with operations, which internally represent description operators, unbounded set quantifiers and local fixed point operators. We investigate the proof theoretic strength of the resulting systems, which turn out to be impredicative . (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  11
    (1 other version)Elementary Equivalence and Constructible Models of Zermelo‐Fraenkel Set Theory.R. H. Cowen - 1976 - Mathematical Logic Quarterly 22 (1):333-338.
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  30
    Defending the Axioms: On the Philosophical Foundations of Set Theory.William Lane Craig - 2012 - Philosophia Christi 14 (1):223-228.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44. Causal Set Theory and Growing Block? Not Quite.Marco Forgione - manuscript
    In this contribution, I explore the possibility of characterizing the emergence of time in causal set theory (CST) in terms of the growing block universe (GBU) metaphysics. I show that although GBU seems to be the most intuitive time metaphysics for CST, it leaves us with a number of interpretation problems, independently of which dynamics we choose to favor for the theory —here I shall consider the Classical Sequential Growth and the Covariant model. Discrete general covariance of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  38
    An extension of Ackermann's set theory.Donald Perlis - 1972 - Journal of Symbolic Logic 37 (4):703-704.
  46.  36
    Selected Essays on the History of Set Theory and Logics Philip E. B. Jourdain Ivor Grattan-Guinness.Joan Richards - 1994 - Isis 85 (2):354-355.
  47.  27
    Truth in all of certain well‐founded countable models arising in set theory.John W. Rosenthal - 1975 - Mathematical Logic Quarterly 21 (1):97-106.
    Direct download  
     
    Export citation  
     
    Bookmark  
  48.  28
    Truth in All of Certain Well-Founded Countable Models Arising in Set Theory II.John W. Rosenthal - 1979 - Mathematical Logic Quarterly 25 (25-29):403-405.
    Direct download  
     
    Export citation  
     
    Bookmark  
  49.  60
    Cantorian set Theory and Limitation of Size.John Mayberry - 1986 - Philosophical Quarterly 36 (144):429-434.
    This is a book review of Cantorian set theory and limitations of size by Michael Hallett.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  50.  24
    Constructive Set Theory with Operations.Andrea Cantini & Laura Crosilla - 2007 - In Alessandro Andretta, Keith Kearnes & Domenico Zambella (eds.), Logic Colloquium 2004: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Torino, Italy, July 25-31, 2004. Cambridge: Cambridge University Press.
    We present an extension of constructive Zermelo{Fraenkel set theory [2]. Constructive sets are endowed with an applicative structure, which allows us to express several set theoretic constructs uniformly and explicitly. From the proof theoretic point of view, the addition is shown to be conservative. In particular, we single out a theory of constructive sets with operations which has the same strength as Peano arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 921