Results for 'computer '

978 found
Order:
  1.  10
    Computer Science Logic: 11th International Workshop, CSL'97, Annual Conference of the EACSL, Aarhus, Denmark, August 23-29, 1997, Selected Papers.M. Nielsen, Wolfgang Thomas & European Association for Computer Science Logic - 1998 - Springer Verlag.
    This book constitutes the strictly refereed post-workshop proceedings of the 11th International Workshop on Computer Science Logic, CSL '97, held as the 1997 Annual Conference of the European Association on Computer Science Logic, EACSL, in Aarhus, Denmark, in August 1997. The volume presents 26 revised full papers selected after two rounds of refereeing from initially 92 submissions; also included are four invited papers. The book addresses all current aspects of computer science logics and its applications and thus (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. Randomness and Recursive Enumerability.Siam J. Comput - unknown
    One recursively enumerable real α dominates another one β if there are nondecreasing recursive sequences of rational numbers (a[n] : n ∈ ω) approximating α and (b[n] : n ∈ ω) approximating β and a positive constant C such that for all n, C(α − a[n]) ≥ (β − b[n]). See [R. M. Solovay, Draft of a Paper (or Series of Papers) on Chaitin’s Work, manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1974, p. 215] and [G. J. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3. The fortieth annual lecture series 1999-2000.Brain Computations & an Inevitable Conflict - 2000 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 31:199-200.
  4.  6
    A Model for Proustian Decay.Computer Lars - 2024 - Nordic Journal of Aesthetics 33 (67).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5. Section 2. Model Theory.Va Vardanyan, On Provability Resembling Computability, Proving Aa Voronkov & Constructive Logic - 1989 - In Jens Erik Fenstad, Ivan Timofeevich Frolov & Risto Hilpinen, Logic, methodology, and philosophy of science VIII: proceedings of the Eighth International Congress of Logic, Methodology, and Philosophy of Science, Moscow, 1987. New York, NY, U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science.
    No categories
     
    Export citation  
     
    Bookmark  
  6.  22
    Hector freytes, Antonio ledda, Giuseppe sergioli and.Roberto Giuntini & Probabilistic Logics in Quantum Computation - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler, New Challenges to Philosophy of Science. Springer Verlag. pp. 49.
    Direct download  
     
    Export citation  
     
    Bookmark  
  7. Paul M. kjeldergaard.Pittsburgh Computations Centers - 1968 - In T. Dixon & Deryck Horton, Verbal Behavior and General Behavior Theory. Prentice-Hall.
    No categories
     
    Export citation  
     
    Bookmark  
  8. The general problem of the primitive was finally solved in 1912 by A. Den-joy. But his integration process was more complicated than that of Lebesgue. Denjoy's basic idea was to first calculate the definite integral∫ b. [REVIEW]How to Compute Antiderivatives - 1995 - Bulletin of Symbolic Logic 1 (3).
     
    Export citation  
     
    Bookmark  
  9.  3
    A logical formalisation of false belief tasks.R. Velázquez-Quesada A. Institute for Logic Anthia Solaki Fernando, Computation Language, Netherlandsb Netherlands Organization for Applied Scientific Research, Media Studies Netherlandsc Information Science & Norway - forthcoming - Journal of Applied Non-Classical Logics:1-51.
    Theory of Mind (ToM), the cognitive capacity to attribute internal mental states to oneself and others, is a crucial component of social skills. Its formal study has become important, witness recent research on reasoning and information update by intelligent agents, and some proposals for its formal modelling have put forward settings based on Epistemic Logic (EL). Still, due to intrinsic idealisations, it is questionable whether EL can be used to model the high-order cognition of ‘real’ agents. This manuscript proposes a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  4
    Intentional identity revisited.Ahti Pietarinen A. School of Cognitive, Computing Sciences, Falmer, Brighton, BN1 9QH & Uk - 2010 - Nordic Journal of Philosophical Logic 6 (2):147-188.
    The problem of intentional identity, as originally offered by Peter Geach, says that there can be an anaphoric link between an indefinite term and a pronoun across a sentential boundary and across propositional attitude contexts, where the actual existence of an individual for the indefinite term is not presupposed. In this paper, a semantic resolution to this elusive puzzle is suggested, based on a new quantified intensional logic and game-theoretic semantics (GTS) of imperfect information. This constellation leads to an expressive (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11.  9
    Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning about Knowledge: March 19-22, 1988, Monterey, California.Joseph Y. Halpern, International Business Machines Corporation, American Association of Artificial Intelligence, United States & Association for Computing Machinery - 1986
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  32
    Quantum Computation and Quantum Information.Michael A. Nielsen & Isaac L. Chuang - 2000 - Cambridge University Press.
    First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.
    Direct download  
     
    Export citation  
     
    Bookmark   214 citations  
  13. Computability and Logic.George Boolos, John Burgess, Richard P. & C. Jeffrey - 1980 - New York: Cambridge University Press. Edited by John P. Burgess & Richard C. Jeffrey.
    Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This 2007 fifth edition has been thoroughly revised by John Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   108 citations  
  14.  20
    Unconventional Computing, Arts, Philosophy.Andrew Adamatzky (ed.) - 2022 - World Scientific Publishing Company.
    The unique compendium re-assesses the value of future and emergent computing technologies via artistic and philosophical means. The book encourages scientists to adopt inspiring thinking of artists and philosophers to reuse scientific concepts in their works.The useful reference text consists of non-typical topics, where artistic and philosophical concepts encourage readers to adopt unconventional approaches towards computing and immerse themselves into discoveries of future emerging landscape.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  15.  22
    Animal-computer interfaces.Irene M. Pepperberg - 2023 - Interaction Studies 24 (2):193-200.
    The field of animal-computer interfaces has a longer history than one might at first suppose. In this Introduction, I first discuss some of the early attempts to integrate computers into the study of animal cognition, communication, and behavior and how they provided the groundwork for subsequent research in nonhuman-computer interfaces. I then summarize the various contributions to this special issue, emphasizing how they provide a snapshot into the current state of the field. I close by emphasizing the value (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  56
    Physical Computation: A Mechanistic Account.Gualtiero Piccinini - 2015 - Oxford, GB: Oxford University Press UK.
    Gualtiero Piccinini articulates and defends a mechanistic account of concrete, or physical, computation. A physical system is a computing system just in case it is a mechanism one of whose functions is to manipulate vehicles based solely on differences between different portions of the vehicles according to a rule defined over the vehicles. Physical Computation discusses previous accounts of computation and argues that the mechanistic account is better. Many kinds of computation are explicated, such as digital vs. analog, serial vs. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   137 citations  
  17.  14
    On Computability Theoretic Properties of Structures and Their Cartesian Products.Bakhadyr Khoussainov - 2000 - Mathematical Logic Quarterly 46 (4):467-476.
    In this paper we show that for any set X ⊆ ω there exists a structure [MATHEMATICAL SCRIPT CAPITAL A] that has no presentation computable in X such that [MATHEMATICAL SCRIPT CAPITAL A]2 has a computable presentation. We also show that there exists a structure [MATHEMATICAL SCRIPT CAPITAL A] with infinitely many computable isomorphism types such that [MATHEMATICAL SCRIPT CAPITAL A]2 has exactly one computable isomorphism type.
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  39
    Computable analysis of the abstract Cauchy problem in a Banach space and its applications I.Klaus Weihrauch & Ning Zhong - 2007 - Mathematical Logic Quarterly 53 (4‐5):511-531.
    We study computability of the abstract linear Cauchy problem equation image)where A is a linear operator, possibly unbounded, on a Banach space X. We give necessary and sufficient conditions for A such that the solution operator K: x ↦ u of the problem is computable. For studying computability we use the representation approach to computable analysis developed by Weihrauch and others. This approach is consistent with the model used by Pour-El/Richards.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  41
    Computability of measurable sets via effective topologies.Yongcheng Wu & Decheng Ding - 2006 - Archive for Mathematical Logic 45 (3):365-379.
    We investigate in the frame of TTE the computability of functions of the measurable sets from an infinite computable measure space such as the measure and the four kinds of set operations. We first present a series of undecidability and incomputability results about measurable sets. Then we construct several examples of computable topological spaces from the abstract infinite computable measure space, and analyze the computability of the considered functions via respectively each of the standard representations of the computable topological spaces (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  20. Quantum Computing’s Classical Problem, Classical Computing’s Quantum Problem.Rodney Van Meter - 2014 - Foundations of Physics 44 (8):819-828.
    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  21.  51
    Computable symbolic dynamics.Douglas Cenzer, S. Ali Dashti & Jonathan L. F. King - 2008 - Mathematical Logic Quarterly 54 (5):460-469.
    We investigate computable subshifts and the connection with effective symbolic dynamics. It is shown that a decidable Π01 class P is a subshift if and only if there exists a computable function F mapping 2ℕ to 2ℕ such that P is the set of itineraries of elements of 2ℕ. Π01 subshifts are constructed in 2ℕ and in 2ℤ which have no computable elements. We also consider the symbolic dynamics of maps on the unit interval.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   71 citations  
  23. A computational foundation for the study of cognition.David Chalmers - 2011 - Journal of Cognitive Science 12 (4):323-357.
    Computation is central to the foundations of modern cognitive science, but its role is controversial. Questions about computation abound: What is it for a physical system to implement a computation? Is computation sufficient for thought? What is the role of computation in a theory of cognition? What is the relation between different sorts of computational theory, such as connectionism and symbolic computation? In this paper I develop a systematic framework that addresses all of these questions. Justifying the role of computation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   100 citations  
  24. Cognition, Computing and Dynamic Systems.Mario Villalobos & Joe Dewhurst - 2016 - Límite. Revista Interdisciplinaria de Filosofía y Psicología 1.
    Traditionally, computational theory (CT) and dynamical systems theory (DST) have presented themselves as opposed and incompatible paradigms in cognitive science. There have been some efforts to reconcile these paradigms, mainly, by assimilating DST to CT at the expenses of its anti-representationalist commitments. In this paper, building on Piccinini’s mechanistic account of computation and the notion of functional closure, we explore an alternative conciliatory strategy. We try to assimilate CT to DST by dropping its representationalist commitments, and by inviting CT to (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  25.  56
    Computability Theory.S. Barry Cooper - 2003 - Chapman & Hall.
    Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary (...)
  26.  24
    Computability of String Functions Over Algebraic Structures Armin Hemmerling.Armin Hemmerling - 1998 - Mathematical Logic Quarterly 44 (1):1-44.
    We present a model of computation for string functions over single-sorted, total algebraic structures and study some basic features of a general theory of computability within this framework. Our concept generalizes the Blum-Shub-Smale setting of computability over the reals and other rings. By dealing with strings of arbitrary length instead of tuples of fixed length, some suppositions of deeper results within former approaches to generalized recursion theory become superfluous. Moreover, this gives the basis for introducing computational complexity in a BSS-like (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Computability & unsolvability.Martin Davis - 1958 - New York: Dover Publications.
    Classic text considersgeneral theory of computability, computable functions, operations on computable functions, Turing machines self-applied, unsolvable decision problems, applications of general theory, mathematical logic, Kleene hierarchy, computable functionals, classification of unsolvable decision problems and more.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   125 citations  
  28.  99
    Computability, an introduction to recursive function theory.Nigel Cutland - 1980 - New York: Cambridge University Press.
    What can computers do in principle? What are their inherent theoretical limitations? These are questions to which computer scientists must address themselves. The theoretical framework which enables such questions to be answered has been developed over the last fifty years from the idea of a computable function: intuitively a function whose values can be calculated in an effective or automatic way. This book is an introduction to computability theory (or recursion theory as it is traditionally known to mathematicians). Dr (...)
  29.  38
    Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
    This book describes a program of research in computable structure theory. The goal is to find definability conditions corresponding to bounds on complexity which persist under isomorphism. The results apply to familiar kinds of structures (groups, fields, vector spaces, linear orderings Boolean algebras, Abelian p-groups, models of arithmetic). There are many interesting results already, but there are also many natural questions still to be answered. The book is self-contained in that it includes necessary background material from recursion theory (ordinal notations, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  30. A Study on Fog Computing Environment Mobility and Migration.R. J. Pedro - 2018 - 22nd International Conference Electronics 22.
    Cloud Computing paradigm has reached a high degree of popularity among all kinds of computer users, but it may not be suitable for mobile devices as they need computing power to be as close as possible to data sources in order to reduce delays. This paper focuses on achieving mathematical models for users moving around and proposes an overlay mobility model for Fog Data Centres based on traditional wireless mobility models aimed at better allocating edge computing resources to client (...)
     
    Export citation  
     
    Bookmark  
  31. Computation and cognition: Issues in the foundation of cognitive science.Zenon W. Pylyshyn - 1980 - Behavioral and Brain Sciences 3 (1):111-32.
    The computational view of mind rests on certain intuitions regarding the fundamental similarity between computation and cognition. We examine some of these intuitions and suggest that they derive from the fact that computers and human organisms are both physical systems whose behavior is correctly described as being governed by rules acting on symbolic representations. Some of the implications of this view are discussed. It is suggested that a fundamental hypothesis of this approach is that there is a natural domain of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   667 citations  
  32. Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry (...)
  33. What Computers Still Can’T Do: A Critique of Artificial Reason.Hubert L. Dreyfus - 1992 - MIT Press.
    A Critique of Artificial Reason Hubert L. Dreyfus . HUBERT L. DREYFUS What Computers Still Can't Do Thi s One XZKQ-GSY-8KDG What. WHAT COMPUTERS STILL CAN'T DO Front Cover.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   287 citations  
  34.  32
    Simulation, computation and dynamics in economics.K. Vela Velupillai & Stefano Zambelli - 2015 - Journal of Economic Methodology 22 (1):1-27.
    Computation and Simulation have always played a role in economics – whether it be pure economic theory or any variant of applied, especially policy-oriented, macro- and microeconomics or what has increasingly come to be called empirical or experimental economics. Computations and simulations are also intrinsically dynamic. This triptych – computation, simulation and dynamic – is given natural foundations, mainly as a result of developments in the mathematics underpinnings in the potentials of computing, using digital technology. A running theme in this (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  64
    Computability and Randomness.André Nies - 2008 - Oxford, England: Oxford University Press UK.
    The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  36.  40
    (3 other versions)Computability and Logic.George S. Boolos, John P. Burgess & Richard C. Jeffrey - 1974 - Cambridge, England: Cambridge University Press. Edited by John P. Burgess & Richard C. Jeffrey.
    This fourth edition of one of the classic logic textbooks has been thoroughly revised by John Burgess. The aim is to increase the pedagogical value of the book for the core market of students of philosophy and for students of mathematics and computer science as well. This book has become a classic because of its accessibility to students without a mathematical background, and because it covers not simply the staple topics of an intermediate logic course such as Godel's Incompleteness (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   59 citations  
  37. Extending Ourselves: Computational Science, Empiricism, and Scientific Method.Paul Humphreys - 2004 - New York, US: Oxford University Press.
    Computational methods such as computer simulations, Monte Carlo methods, and agent-based modeling have become the dominant techniques in many areas of science. Extending Ourselves contains the first systematic philosophical account of these new methods, and how they require a different approach to scientific method. Paul Humphreys draws a parallel between the ways in which such computational methods have enhanced our abilities to mathematically model the world, and the more familiar ways in which scientific instruments have expanded our access to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   339 citations  
  38. Computation as Involving Content: A Response to Egan.Christopher Peacocke - 1999 - Mind and Language 14 (2):195-202.
    Only computational explanations of a content‐involving sort can answer certain ‘how’‐questions; can support content‐involving counterfactuals; and have the generality characteristic of psychological explanations. Purely formal characteriza‐tions of computations have none of these properties, and do not determine content. These points apply not only to psychological explanation, but to Turing machines themselves. Computational explanations which involve content are not opposed to naturalism. They are also required if we are to explain the content‐involving properties of mental states.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  39.  25
    Computational inductive definability.Dexter Kozen - 2004 - Annals of Pure and Applied Logic 126 (1-3):139-148.
    It is shown that over any countable first-order structure, IND programs with dictionaries accept exactly the Π 1 1 relations. This extends a result of Harel and Kozen 118) relating IND and Π 1 1 over countable structures with some coding power, and provides a computational analog of a result of Barwise et al. 108) relating the Π 1 1 relations on a countable structure to a certain family of inductively definable relations on the hereditarily finite sets over that structure.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40. A Computational Linguistics Perspective on the Anticipatory Drive.G. Neumann - 2008 - Constructivist Foundations 4 (1):26-28.
    Open peer commentary on the target article “How and Why the Brain Lays the Foundations for a Conscious Self” by Martin V. Butz. Excerpt: In this commentary to Martin V. Butz’s target article I am especially concerned with his remarks about language (§33, §§71–79, §91) and modularity (§32, §41, §48, §81, §§94–98). In that context, I would like to bring into discussion my own work on computational models of self-monitoring (cf. Neumann 1998, 2004). In this work I explore the idea (...)
     
    Export citation  
     
    Bookmark  
  41.  31
    Computational Philosophy of Science.Paul Thagard - 1988 - MIT Press.
    By applying research in artificial intelligence to problems in the philosophy of science, Paul Thagard develops an exciting new approach to the study of scientific reasoning. This approach uses computational ideas to shed light on how scientific theories are discovered, evaluated, and used in explanations. Thagard describes a detailed computational model of problem solving and discovery that provides a conceptually rich yet rigorous alternative to accounts of scientific knowledge based on formal logic, and he uses it to illuminate such topics (...)
    Direct download  
     
    Export citation  
     
    Bookmark   238 citations  
  42. Computer Models On Mind: Computational Approaches In Theoretical Psychology.Margaret A. Boden - 1988 - Cambridge University Press.
    What is the mind? How does it work? How does it influence behavior? Some psychologists hope to answer such questions in terms of concepts drawn from computer science and artificial intelligence. They test their theories by modeling mental processes in computers. This book shows how computer models are used to study many psychological phenomena--including vision, language, reasoning, and learning. It also shows that computer modeling involves differing theoretical approaches. Computational psychologists disagree about some basic questions. For instance, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   70 citations  
  43. Computation vs. information processing: why their difference matters to cognitive science.Gualtiero Piccinini & Andrea Scarantino - 2010 - Studies in History and Philosophy of Science Part A 41 (3):237-246.
    Since the cognitive revolution, it has become commonplace that cognition involves both computation and information processing. Is this one claim or two? Is computation the same as information processing? The two terms are often used interchangeably, but this usage masks important differences. In this paper, we distinguish information processing from computation and examine some of their mutual relations, shedding light on the role each can play in a theory of cognition. We recommend that theorists of cognition be explicit and careful (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  44. A Computable Universe: Understanding and Exploring Nature as Computation.Hector Zenil - unknown
    A Computable Universe is a collection of papers discussing computation in nature and the nature of computation, a compilation of the views of the pioneers in the contemporary area of intellectual inquiry focused on computational and informational theories of the world. This volume is the definitive source of informational/computational views of the world, and of cutting-edge models of the universe, both digital and quantum, discussed from a philosophical perspective as well as in the greatest technical detail. The book discusses the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   16 citations  
  45. Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas M. Powers, Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics. Cham: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  46. Effective Computation by Humans and Machines.Shagrir Oron - 2002 - Minds and Machines 12 (2):221-240.
    There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  47. Computation and Consciousness.Tim Maudlin - 1989 - Journal of Philosophy 86 (8):407.
  48. On computational explanations.Anna-Mari Rusanen & Otto Lappi - 2016 - Synthese 193 (12):3931-3949.
    Computational explanations focus on information processing required in specific cognitive capacities, such as perception, reasoning or decision-making. These explanations specify the nature of the information processing task, what information needs to be represented, and why it should be operated on in a particular manner. In this article, the focus is on three questions concerning the nature of computational explanations: What type of explanations they are, in what sense computational explanations are explanatory and to what extent they involve a special, “independent” (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  49. Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  50. Computational Modeling in Cognitive Science: A Manifesto for Change.Caspar Addyman & Robert M. French - 2012 - Topics in Cognitive Science 4 (3):332-341.
    Computational modeling has long been one of the traditional pillars of cognitive science. Unfortunately, the computer models of cognition being developed today have not kept up with the enormous changes that have taken place in computer technology and, especially, in human-computer interfaces. For all intents and purposes, modeling is still done today as it was 25, or even 35, years ago. Everyone still programs in his or her own favorite programming language, source code is rarely made available, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
1 — 50 / 978