Results for 'relational quantum mechanics'

970 found
Order:
  1.  47
    Assessing relational quantum mechanics.Ricardo Muciño, Elias Okon & Daniel Sudarsky - 2022 - Synthese 200 (5):1-26.
    Relational Quantum Mechanics is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  55
    Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  4.  50
    Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.Andrea Oldofredi & Claudio Calosi - 2021 - Foundations of Physics 51 (4):1-21.
    According to Relational Quantum Mechanics the wave function \ is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, \ is defined as a computational device encoding observers’ information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5.  58
    Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner.Andrea Di Biagio & Carlo Rovelli - 2022 - Foundations of Physics 52 (3):1-21.
    In recent works, Časlav Brukner and Jacques Pienaar have raised interesting objections to the relational interpretation of quantum mechanics. We answer these objections in detail and show that, far from questioning the viability of the interpretation, they sharpen and clarify it.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  6. Relational quantum mechanics.Federico Laudisa - 2008 - Stanford Encyclopedia of Philosophy.
    Relational quantum mechanics is an interpretation of quantum theory which discards the notions of absolute state of a system, absolute value of its physical quantities, or absolute event. The theory describes only the way systems affect each other in the course of physical interactions. State and physical quantities refer always to the interaction, or the relation, between two systems. Nevertheless, the theory is assumed to be complete. The physical content of quantum theory is understood as (...)
    Direct download  
     
    Export citation  
     
    Bookmark   44 citations  
  7.  14
    Relational Quantum Mechanics: Ozawa’s Intersubjectivity Theorem as Justification of the Postulate on Internally Consistent Descriptions.Andrei Khrennikov - 2024 - Foundations of Physics 54 (3):1-12.
    The Ozawa’s intersubjectivity theorem (OIT) proved within quantum measurement theory supports the new postulate of relational quantum mechanics (RQM), the postulate on internally consistent descriptions. But from OIT viewpoint postulate’s formulation should be completed by the assumption of probability reproducibility. We remark that this postulate was proposed only recently to resolve the problem of intersubjectivity of information in RQM. In contrast to RQM for which OIT is a supporting theoretical statement, QBism is challenged by OIT.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  41
    Relational Quantum Mechanics and Probability.M. Trassinelli - 2018 - Foundations of Physics 48 (9):1092-1111.
    We present a derivation of the third postulate of relational quantum mechanics from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born’s rule naturally emerges (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  23
    Relational Quantum Mechanics and Intuitionistic Mathematics.Charles B. Crane - 2024 - Foundations of Physics 54 (3):1-12.
    We propose a model of physics that blends Rovelli’s relational quantum mechanics (RQM) interpretation with the language of finite information quantities (FIQs), defined by Gisin and Del Santo in the spirit of intuitionistic mathematics. We discuss deficiencies of using real numbers to model physical systems in general, and particularly under the RQM interpretation. With this motivation for an alternative mathematical language, we propose the use of FIQs to model the world under the RQM interpretation, wherein we view (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  20
    Relational quantum mechanics, causal composition, and molecular structure.Stephen Esser - 2024 - Foundations of Chemistry 26 (3):429-446.
    Franklin and Seifert (2021) argue that solving the measurement problem of quantum mechanics (QM) also answers a question central to the philosophy of chemistry: that of how to reconcile QM with the existence of definite molecular structures. This conclusion may appear premature, however, because interactions play a crucial role in shaping molecules, but we generally lack detailed models of how this is accomplished. Given this explanatory gap, simply choosing an interpretation of QM is insufficient, unless the interpretation also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  14
    Relational Quantum Mechanics and Contextuality.Calum Robson - 2024 - Foundations of Physics 54 (4):1-22.
    This paper discusses the question of stable facts in relational quantum mechanics (RQM). I examine how the approach to quantum logic in the consistent histories formalism can be used to clarify what infomation about a system can be shared between different observers. I suggest that the mathematical framework for Consistent Histories can and should be incorporated into RQM, whilst being clear on the interpretational differences between the two approaches. Finally I briefly discuss two related issues: the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13. Information is Physical: Cross-Perspective Links in Relational Quantum Mechanics.Emily Adlam & Carlo Rovelli - 2023 - Philosophy of Physics 1 (1).
    Relational quantum mechanics (RQM) is an interpretation of quantum mechanics based on the idea that quantum states do not describe an absolute property of a system but rather a relationship between systems. There have recently been some criticisms of RQM pertaining to issues around intersubjectivity. In this article, we show how RQM can address these criticisms by adding a new postulate which requires that all of the information possessed by a certain observer is stored (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  14. (1 other version)What Ontology for Relational Quantum Mechanics?Mauro Dorato & Matteo Morganti - 2022 - Foundations of Physics 52 (3):1-19.
    In this paper, we evaluate some proposals that have been put forward to clarify the ontological consequences of relational quantum mechanics. We first focus on priority monism and ontic structural realism and argue that these views are not suitable for providing an ontological interpretation of the theory. Then, we discuss an alternative interpretation that we regard as more promising, based on so-called ‘metaphysical coherentism’, which we also connect to the idea of an event-based, or ‘flash’, ontology.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  15.  79
    QBism and Relational Quantum Mechanics compared.Jacques Pienaar - 2021 - Foundations of Physics 51 (5):1-18.
    The subjective Bayesian interpretation of quantum mechanics and Rovelli’s relational interpretation of quantum mechanics are both notable for embracing the radical idea that measurement outcomes correspond to events whose occurrence is relative to an observer. Here we provide a detailed study of their similarities and especially their differences.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  16. Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
  17.  38
    Relational Quantum Mechanics at the Crossroads.Claudio Calosi & Timotheus Riedel - 2024 - Foundations of Physics 54 (6):1-24.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  30
    Relational quantum mechanics: Rovelli's world.Bas C. van Fraassen - 2010 - Discusiones Filosóficas 11 (17):13-51.
    El inspirador Relational Quantum Mechanicsde Carlo Rovelli cumple varios propósitosde manera simultánea: proporciona unanueva visión de cómo es el mundo de lamecánica cuántica y ofrece un programapara derivar el formalismo de la teoría deun conjunto de postulados simples quepertenecen al procesamiento de la información.Enesteartículopropongoquenosconcentremostotalmente en lo primero,para explorar el mundo de la mecánicacuántica tal como lo representa Rovelli.Es un mundo fascinante, en parte debidoa la dependencia de Rovelli sobre el enfoquedelateoríadelainformaciónparalosfundamentosdelamecánicacuántica,yen parte debido a que su presentaciónimplica asumir una (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Rovelli’s relational quantum mechanics, anti-monism and quantum becoming.Mauro Dorato - unknown
    In this paper I present and defend Rovelli's relation quantum mechanics from some foreseeable objections, so as to clarify its philosophical implications vis a vis rival interpretations. In particular I will ask whether RQM presupposes a hidden recourse to both a duality of evolutions and of ontology. I then concentrate on the pluralistic, antimonistic metaphysical consequences of the theory, due to the impossibility of assigning a state to the quantum universe. Finally, in the last section I note (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  20.  48
    The Bundle Theory Approach to Relational Quantum Mechanics.Andrea Oldofredi - 2021 - Foundations of Physics 51 (1):1-22.
    The present essay provides a new metaphysical interpretation of Relational Quantum Mechanics (RQM) in terms of mereological bundle theory. The essential idea is to claim that a physical system in RQM can be defined as a mereological fusion of properties whose values may vary for different observers. Abandoning the Aristotelian tradition centered on the notion of substance, I claim that RQM embraces an ontology of properties that finds its roots in the heritage of David Hume. To this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  21. Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  22.  90
    The Notion of Locality in Relational Quantum Mechanics.P. Martin-Dussaud, C. Rovelli & F. Zalamea - 2019 - Foundations of Physics 49 (2):96-106.
    The term ‘locality’ is used in different contexts with different meanings. There have been claims that relational quantum mechanics is local, but it is not clear then how it accounts for the effects that go under the usual name of quantum non-locality. The present article shows that the failure of ‘locality’ in the sense of Bell, once interpreted in the relational framework, reduces to the existence of a common cause in an indeterministic context. In particular, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  23.  21
    Comment on “The Notion of Locality in Relational Quantum Mechanics”.Jacques Pienaar - 2019 - Foundations of Physics 49 (12):1404-1414.
    A recent paper has given a lucid treatment of Bell’s notion of local causality within the framework of the relational interpretation of quantum mechanics. However, the authors went on to conclude that the quantum violation of Bell’s notion of local causality is no more surprising than a common cause. Here, I argue that this conclusion is unwarranted by the authors’ own analysis. On the contrary, within the framework outlined by the authors, I argue that far from (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  24.  56
    Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics.Giuseppe Castagnoli - 2016 - Foundations of Physics 46 (3):360-381.
    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  20
    Comment on Aurélien Drezet’s Defense of Relational Quantum Mechanics.Jay Lawrence, Marcin Markiewicz & Marek Żukowski - 2024 - Foundations of Physics 54 (4):1-5.
    Aurélien Drezet has attempted in Found. Phys. 54(1), 5 (2023) to defend Relational Quantum Mechanics (RQM) against our recent critique, entitled Relational Quantum Mechanics is incompatible with quantum mechanics, published in Quantum 7, 1015 (2023). Drezet not only misrepresents our work, but he also misconstructs the very theory (RQM) that he claims to defend.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26. Physical Relations or Functional Relations? A non-metaphysical construal of Rovelli’s Relational Quantum Mechanics.Michel Bitbol - unknown
    Rovelli’s RQM is first characterized by contrast with both Everett’s and Bohr’s interpretations of quantum mechanics. Then, it is shown that a basic difficulty arises from the choice of formulating RQM in a naturalistic framework. Even though, according to Rovelli’s interpretation, statements about the world only make sense relative to certain naturalized observers described by means of quantum mechanics, this very meta-statement seems to make sense relative to a sort of super-observer which does not partake of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  27.  65
    Quantum Mechanics, Correlations, and Relational Probability.Fernando Birman - 2009 - Critica 41 (121):3-22.
    This article sets forth and discusses the Ithaca Interpretation of Quantum Mechanics. Section 1 presents the standard formalism of quantum mechanics and the measurement problem. Section 2 sketches Everett's interpretation as a preamble to IIQM. Section 3 sets out IIQM's central claim: it is possible to make sense of quantum mechanics by taking as the proper subject of physics the correlations among subsystems. Section 4 introduces a theorem of quantum mechanics, the SSC (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  24
    A Critical Analysis of ‘Relative Facts Do Not Exist: Relational Quantum Mechanics Is Incompatible with Quantum Mechanics’ by Jay Lawrence, Marcin Markiewicz and Marek Źukowski.Aurélien Drezet - 2023 - Foundations of Physics 54 (1):1-8.
    We discuss a recent work by J. Lawrence et al. [arxiv.org/abs/2208.11793] criticizing relational quantum mechanics (RQM) and based on a famous nonlocality theorem Going back to Greenberger Horne and Zeilinger (GHZ). Here, we show that the claims presented in this recent work are unjustified and we debunk the analysis.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  47
    Fact-nets: Towards a Mathematical Framework for Relational Quantum Mechanics.Federico Zalamea, Vaclav Zatloukal, Jan Głowacki, Titouan Carette & Pierre Martin-Dussaud - 2023 - Foundations of Physics 53 (1):1-33.
    The relational interpretation of quantum mechanics (RQM) has received a growing interest since its first formulation in 1996. Usually presented as an interpretational layer over the usual quantum mechanics formalism, it appears as a philosophical perspective without proper mathematical counterparts. This state of affairs has direct consequences on the scientific debate on RQM which still suffers from misunderstandings and imprecise statements. In an attempt to clarify those debates, the present paper proposes a radical reformulation of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  31.  55
    How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. On the relation between quantum mechanical and neo-mechanistic ontologies and explanatory strategies.Meinard Kuhlmann & Stuart Glennan - 2014 - European Journal for Philosophy of Science 4 (3):337-359.
    Advocates of the New Mechanicism in philosophy of science argue that scientific explanation often consists in describing mechanisms responsible for natural phenomena. Despite its successes, one might think that this approach does not square with the ontological strictures of quantum mechanics. New Mechanists suppose that mechanisms are composed of objects with definite properties, which are interconnected via local causal interactions. Quantum mechanics calls these suppositions into question. Since mechanisms are hierarchical it appears that even macroscopic mechanisms (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  33.  32
    Relating the Quantum Mechanics of Discrete Systems to Standard Canonical Quantum Mechanics.Gerard ’T. Hooft - 2014 - Foundations of Physics 44 (4):406-425.
    Standard canonical quantum mechanics makes much use of operators whose spectra cover the set of real numbers, such as the coordinates of space, or the values of the momenta. Discrete quantum mechanics uses only strictly discrete operators. We show how one can transform systems with pairs of integer-valued, commuting operators $P_i$ and $Q_i$ , to systems with real-valued canonical coordinates $q_i$ and their associated momentum operators $p_i$ . The discrete system could be entirely deterministic while the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  34.  28
    Quantum Mechanics and Salvation: a new meeting point for science and theology.Emily Qureshi-Hurst - forthcoming - Toronto Journal of Theology.
    Quantum mechanics has recently indicated that temporal order is not always fixed, a finding that has far-reaching philosophical and theological implications. The phenomena, termed “indefinite causal order,” shows that events can be in a superposition with regard to their order. In the experimental setting with which this article is concerned, two events, A and B, were shown to be in the ordering relations “A before B” and “B before A” at the same time. This article introduces an ongoing (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  28
    Wittgenstein, Nāgārjuna and relational quantum mechanics.Michael A. Peters - 2022 - Educational Philosophy and Theory 54 (12):1942-1951.
    My propositions serve as elucidations in this way: he who understands me eventually recognises them as nonsensical, when he has used them – as steps – to climb up over them. (He must, so to speak,...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  83
    Quantum mechanics and much more: Alisa Bokulich: Reexamining the quantum-classical relation. Beyond reductionism and pluralism. Cambridge: Cambridge University Press, 2008, x+95pp, $74 HB.Dennis Dieks - 2011 - Metascience 20 (1):99-101.
  37. Why quantum mechanics favors adynamical and acausal interpretations such as relational blockworld over backwardly causal and time-symmetric rivals.Michael Silberstein, Michael Cifone & William Mark Stuckey - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):736-751.
    We articulate the problems posed by the quantum liar experiment (QLE) for backwards causation interpretations of quantum mechanics, time-symmetric accounts and other dynamically oriented local hidden variable theories. We show that such accounts cannot save locality in the case of QLE merely by giving up “lambda-independence.” In contrast, we show that QLE poses no problems for our acausal Relational Blockworld interpretation of quantum mechanics, which invokes instead adynamical global constraints to explain Einstein–Podolsky–Rosen (EPR) correlations (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  38. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  27
    Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  40. Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   114 citations  
  41.  13
    On the relation between quantum mechanical probabilities and event frequencies.C. Anastopoulos - 2004 - Annals of Physics 313:368-382.
    The probability ‘measure’ for measurements at two consecutive mo- ments of time is non-additive. These probabilities, on the other hand, may be determined by the limit of relative frequency of measured events, which are by nature additive. We demonstrate that there are only two ways to resolve this problem. The first solution places emphasis on the precise use of the concept of conditional probability for successive mea- surements. The physically correct conditional probabilities define additive probabilities for two-time measurements. These probabilities (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  26
    Anti-foundationalist Coherentism as an Ontology for Relational Quantum Mechanics.Emma Jaura - 2024 - Foundations of Physics 54 (4):1-21.
    There have been a number of recent attempts to identify the best metaphysical framework for capturing Rovelli’s Relational Quantum Mechanics (RQM). All such accounts commit to some form of fundamentalia, whether they be traditional objects, physical relations, events or ‘flashes’, or the cosmos as a fundamental whole. However, Rovelli’s own recommendation is that ‘a natural philosophical home for RQM is an anti-foundationalist perspective' (Rovelli in Philos Trans R Soc 376:10, 2018). This gives us some prima facie reason (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43. Quantum mechanics as a theory of probability.Itamar Pitowsky - unknown
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  44.  25
    Understanding Quantum Mechanics.Christian de Ronde - unknown
    Quantum Mechanics has faced deep controversies and debates since its origin when Werner Heisenberg proposed the first mathematical formalism capable to operationally account for what had been recently discovered as the new field of quantum phenomena. Today, even though we have reached a standardized version of QM which is taught in Universities all around the world, there is still no consensus regarding the conceptual reference of the theory and, if or if not, it can refer to something (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Quantum mechanics and Priority Monism.Claudio Calosi - 2014 - Synthese 191 (5):915-928.
    The paper address the question of whether quantum mechanics (QM) favors Priority Monism, the view according to which the Universe is the only fundamental object. It develops formal frameworks to frame rigorously the question of fundamental mereology and its answers, namely (Priority) Pluralism and Monism. It then reconstructs the quantum mechanical argument in favor of the latter and provides a detailed and thorough criticism of it that sheds furthermore new light on the relation between parthood, composition and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  46.  30
    Quantum mechanics, emergence, and decisions.Guido Bacciagaluppi - 2020 - Mind and Society 19 (2):299-305.
    I summarise some aspects of the relation between quantum mechanics and the macroscopic world in the context of the multiverse or Everett theory. I do so with particular reference to the results of the theory of decoherence, the notions of reduction and emergence, and agents' decisions.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  36
    Quantum Mechanics as a Statistical Description of Classical Electrodynamics.Yehonatan Knoll - 2017 - Foundations of Physics 47 (7):959-990.
    It is shown that quantum mechanics is a plausible statistical description of an ontology described by classical electrodynamics. The reason that no contradiction arises with various no-go theorems regarding the compatibility of QM with a classical ontology, can be traced to the fact that classical electrodynamics of interacting particles has never been given a consistent definition. Once this is done, our conjecture follows rather naturally, including a purely classical explanation of photon related phenomena. Our analysis entirely rests on (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48.  57
    Quantum mechanics of space and time.H. S. Green - 1978 - Foundations of Physics 8 (7-8):573-591.
    A formulation of relativistic quantum mechanics is presented independent of the theory of Hilbert space and also independent of the hypothesis of spacetime manifold. A hierarchy is established in the nondistributive lattice of physical ensembles, and it is shown that the projections relating different members of the hierarchy form a semigroup. It is shown how to develop a statistical theory based on the definition of a statistical operator. Involutions defined on the matrix representations of the semigroup are interpreted (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  86
    Quantum mechanics and consciousness.Friedrich Beck - 1994 - Journal of Consciousness Studies 1 (2):253-255.
    The first issue of JCS published an interview with Roger Penrose on his recent book Shadows of the Mind: A Search for the Missing Science of Consciousness . In it Professor Penrose, among other subjects, presented his views on the role of quantum mechanics on our way towards a better understanding of brain functioning and its relation to consciousness. In this note we comment on some aspects of his reasoning.
    Direct download  
     
    Export citation  
     
    Bookmark  
  50. Absolute quantum mechanics.Steven Weinstein - 2001 - British Journal for the Philosophy of Science 52 (1):67-73.
    Whereas one can conceive of a relational classical mechanics in which absolute space and time do not play a fundamental role, quantum mechanics does not readily admit any such relational formulation.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
1 — 50 / 970