Results for 'protein'

990 found
Order:
  1. Section A. membranes.Protein Synthesis as A. Membrane-Oriented & Richard W. Hendler - 1968 - In Peter Koestenbaum (ed.), Proceedings. [San Jose? Calif.,: [San Jose? Calif.. pp. 37.
    No categories
     
    Export citation  
     
    Bookmark  
  2.  49
    Protein transport into peroxisomes: Knowns and unknowns.Tânia Francisco, Tony A. Rodrigues, Ana F. Dias, Aurora Barros-Barbosa, Diana Bicho & Jorge E. Azevedo - 2017 - Bioessays 39 (10):1700047.
    Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 − the “plunger” − pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex − the “barrel” − into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the “barrel” is an ATP-independent process, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3. The Protein Ontology: A structured representation of protein forms and complexes.Darren Natale, Cecilia N. Arighi, Winona C. Barker, Judith A. Blake, Carol J. Bult, Michael Caudy, Harold J. Drabkin, Peter D’Eustachio, Alexei V. Evsikov, Hongzhan Huang, Jules Nchoutmboube, Natalia V. Roberts, Barry Smith, Jian Zhang & Cathy H. Wu - 2011 - Nucleic Acids Research 39 (1):D539-D545.
    The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  4.  29
    Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress.Frédéric Lessard, Léa Brakier-Gingras & Gerardo Ferbeyre - 2019 - Bioessays 41 (3):1800183.
    Ribosome biogenesis includes the making and processing of ribosomal RNAs, the biosynthesis of ribosomal proteins from their mRNAs in the cytosol and their transport to the nucleolus to assemble pre‐ribosomal particles. Several stresses including cellular senescence reduce nucleolar rRNA synthesis and maturation increasing the availability of ribosome‐free ribosomal proteins. Several ribosomal proteins can activate the p53 tumor suppressor pathway but cells without p53 can still arrest their proliferation in response to an imbalance between ribosomal proteins and mature rRNA production. Recent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  20
    Protein translocation across mitochondrial membranes.Ulla Wienhues & Walter Neupert - 1992 - Bioessays 14 (1):17-23.
    Protein translocation across biological membranes is of fundamental importance for the biogenesis of organelles and in protein secretion. We will give an overview of the recent achievements in the understanding of protein translocation across mitochondrial membranes(1‐5). In particular we will focus on recently identified components of the mitochondrial import apparatus.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  44
    Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development.Mikhail Skoblov, Andrey Marakhonov, Ekaterina Marakasova, Anna Guskova, Vikas Chandhoke, Aybike Birerdinc & Ancha Baranova - 2013 - Bioessays 35 (7):586-596.
    The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of proteinprotein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins. In particular, we predict that KCTD20 participates in the AKT‐mTOR‐p70 S6k signaling cascade, KCTD5 plays a role in cytokinesis in a NEK6 and ch‐TOG‐dependent manner, KCTD10 regulates the RhoA/RhoB pathway. Developmental (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Protein Ontology: A controlled structured network of protein entities.A. Natale Darren, N. Arighi Cecilia, A. Blake Judith, J. Bult Carol, R. Christie Karen, Cowart Julie, D’Eustachio Peter, D. Diehl Alexander, J. Drabkin Harold, Helfer Olivia, Barry Smith & Others - 2013 - Nucleic Acids Research 42 (1):D415-21..
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  8. Protein-centric connection of biomedical knowledge: Protein Ontology research and annotation tools.Cecilia N. Arighi, Darren A. Natale, Judith A. Blake, Carol J. Bult, Michael Caudy, Alexander D. Diehl, Harold J. Drabkin, Peter D'Eustachio, Alexei Evsikov, Hongzhan Huang, Barry Smith & Others - 2011 - In Landgrebe Jobst & Smith Barry (eds.), Proceedings of the 2nd International Conference on Biomedical Ontology. CEUR, vol. 833. pp. 285-287.
    The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  8
    Fluid protein fold space and its implications.Lauren L. Porter - 2023 - Bioessays 45 (9):2300057.
    Fold‐switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold‐switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  27
    Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions.Lei Wang, Jiaojiao Yu & Chih-Chen Wang - 2021 - Bioessays 43 (3):2000147.
    Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  27
    RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives.Maciej Salaga, Martin Storr, Kirill A. Martemyanov & Jakub Fichna - 2016 - Bioessays 38 (4).
    Regulators of G protein signaling (RGS) proteins provide timely termination of G protein‐coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti‐inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  12.  34
    G protein‐coupled receptors: the inside story.Kees Jalink & Wouter H. Moolenaar - 2010 - Bioessays 32 (1):13-16.
    Recent findings necessitate revision of the traditional view of G protein‐coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  65
    Proteins, the chaperone function and heredity.Valeria Mosini - 2013 - Biology and Philosophy 28 (1):53-74.
    In this paper I use a case study—the discovery of the chaperon function exerted by proteins in the various steps of the hereditary process—to re-discuss the question whether the nucleic acids are the sole repositories of relevant information as assumed in the information theory of heredity. The evidence I here present of a crucial role for molecular chaperones in the folding of nascent proteins, as well as in DNA duplication, RNA folding and gene control, suggests that the family of proteins (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  23
    S100 protein and down syndrome.Alexander Marks & Robert Allore - 1990 - Bioessays 12 (8):381-383.
    S100 protein is a low molecular weight calcium‐binding protein widely distributed in the central nervous system of vertebrates. Recent evidence suggests that S100 protein may play a role in the regulation of glial proliferation and neuronal differentiation. The gene for S100 protein has been mapped to the 21q22 region, a chromosomal locus whose duplication has been implicated in the generation of Down Syndrome (DS). This raises the possibility that abnormalities in S100 protein gene dosage at (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  22
    The Protein‐Coding Human Genome: Annotating High‐Hanging Fruits.Klas Hatje, Stefanie Mühlhausen, Dominic Simm & Martin Kollmar - 2019 - Bioessays 41 (11):1900066.
    The major transcript variants of human protein‐coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes—they can be protein‐coding, noncoding, or pseudogenes—and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise. These limitations have partially been overcome by dedicated algorithms to detect alternative spliced (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  7
    C2H2 proteins: Evolutionary aspects of domain architecture and diversification.Artem N. Bonchuk & Pavel G. Georgiev - 2024 - Bioessays 46 (8):2400052.
    The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2‐type zinc finger domains that specifically bind to DNA. Few well‐studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17. Protein Analysis Meets Visual Word Recognition: A Case for String Kernels in the Brain.Thomas Hannagan & Jonathan Grainger - 2012 - Cognitive Science 36 (4):575-606.
    It has been recently argued that some machine learning techniques known as Kernel methods could be relevant for capturing cognitive and neural mechanisms (Jäkel, Schölkopf, & Wichmann, 2009). We point out that ‘‘String kernels,’’ initially designed for protein function prediction and spam detection, are virtually identical to one contending proposal for how the brain encodes orthographic information during reading. We suggest some reasons for this connection and we derive new ideas for visual word recognition that are successfully put to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  18. Framework for a protein ontology.Darren A. Natale, Cecilia N. Arighi, Winona Barker, Judith Blake, Ti-Cheng Chang, Zhangzhi Hu, Hongfang Liu, Barry Smith & Cathy H. Wu - 2007 - BMC Bioinformatics 8 (Suppl 9):S1.
    Biomedical ontologies are emerging as critical tools in genomic and proteomic research where complex data in disparate resources need to be integrated. A number of ontologies exist that describe the properties that can be attributed to proteins; for example, protein functions are described by Gene Ontology, while human diseases are described by Disease Ontology. There is, however, a gap in the current set of ontologies—one that describes the protein entities themselves and their relationships. We have designed a (...) Ontology (PRO) to facilitate protein annotation and to guide new experiments. The components of PRO extend from the classification of proteins on the basis of evolutionary relationships to the representation of the multiple protein forms of a gene (products generated by genetic variation, alternative splicing, proteolytic cleavage, and other post-translational modification). PRO will allow the specification of relationships between PRO, GO and other OBO Foundry ontologies. Here we describe the initial development of PRO, illustrated using human proteins from the TGF-beta signaling pathway. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  19.  27
    Replication protein A: Single‐stranded DNA's first responder.Ran Chen & Marc S. Wold - 2014 - Bioessays 36 (12):1156-1161.
    Replication protein A (RPA), the major single‐stranded DNA‐binding protein in eukaryotic cells, is required for processing of single‐stranded DNA (ssDNA) intermediates found in replication, repair, and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high‐affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  20.  23
    Quinary protein structure and the consequences of crowding in living cells: Leaving the test‐tube behind.Anna Jean Wirth & Martin Gruebele - 2013 - Bioessays 35 (11):984-993.
    Although the importance of weak proteinprotein interactions has been understood since the 1980s, scant attention has been paid to this “quinary structure”. The transient nature of quinary structure facilitates dynamic sub‐cellular organization through loose grouping of proteins with multiple binding partners. Despite our growing appreciation of the quinary structure paradigm in cell biology, we do not yet understand how the many forces inside the cell – the excluded volume effect, the “stickiness” of the cytoplasm, and hydrodynamic interactions – (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  24
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  9
    Membrane protein assembly: Rules of the game.Gunnar von Heijne - 1995 - Bioessays 17 (1):25-30.
    Integral membrane proteins are found in all cellular membranes and fulfil many of the functions that are central to life. A critical step in the biosynthesis of membrane proteins is their insertion into the lipid bilayer. The mechanisms of membrane protein insertion and folding are becoming increasingly better understood, and efficient methods for the ab initio prediction of three‐dimensional protein structure from the primary amino acid sequence may be within reach. Already, the basic tools needed for engineering and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  9
    Protein inheritance (prions) based on parallel in‐register β‐sheet amyloid structures.Reed B. Wickner, Frank Shewmaker, Dmitry Kryndushkin & Herman K. Edskes - 2008 - Bioessays 30 (10):955-964.
    Most prions (infectious proteins) are self‐propagating amyloids (filamentous protein multimers), and have been found in both mammals and fungal species. The prions [URE3] and [PSI+] of yeast are disease agents of Saccharomyces cerevisiae while [Het‐s] of Podospora anserina may serve a normal cellular function. The parallel in‐register beta‐sheet structure shown by prion amyloids makes possible a templating action at the end of filaments which explains the faithful transmission of variant differences in these molecules. This property of self‐reproduction, in turn, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  24.  19
    Kinesin proteins: A phylum of motors for microtubule‐based motility.Jonathan D. Moore & Sharyn A. Endow - 1996 - Bioessays 18 (3):207-219.
    The cellular processes of transport, division and, possibly, early development all involve microtubule‐based motors. Recent work shows that, unexpectedly, many of these cellular functions are carried out by different types of kinesin and kinesin‐related motor proteins. The kinesin proteins are a large and rapidly growing family of microtubule‐motor proteins that share a 340‐amino‐acid motor domain. Phylogenetic analysis of the conserved motor domains groups the kinesin proteins into a number of subfamilies, the members of which exhibit a common molecular organization and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  11
    Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond.Eirini Lionaki, Ilias Gkikas & Nektarios Tavernarakis - 2023 - Bioessays 45 (3):2200160.
    Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  18
    Protein trafficking along the exocytotic pathway.Wanjin Hong & Bor Luen Tang - 1993 - Bioessays 15 (4):231-238.
    Proteins of the exocytotic (secretory) pathway are initially targeted to the endoplasmic reticulum (ER) and then translocated across and/or inserted into the membrane of the ER. During their anterograde transport with the bulk of the membrane flow along the exocytotic pathway, some proteins are selectively retained in various intracellular compartments, while others are sorted to different branches of the pathway. The signals or structural motifs that are involved in these selective targeting processes are being revealed and investigations into the mechanistic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  32
    Protein-protein interactions: Making sense of networks via graph-theoretic modeling.Nataša Pržulj - 2011 - Bioessays 33 (2):115-123.
    The emerging area of network biology is seeking to provide insights into organizational principles of life. However, despite significant collaborative efforts, there is still typically a weak link between biological and computational scientists and a lack of understanding of the research issues across the disciplines. This results in the use of simple computational techniques of limited potential that are incapable of explaining these complex data. Hence, the danger is that the community might begin to view the topological properties of network (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  17
    Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking.Vasily Rybakin & Christoph S. Clemen - 2005 - Bioessays 27 (6):625-632.
    Coronins constitute an evolutionarily conserved family of WD‐repeat actin‐binding proteins, which can be clearly classified into two distinct groups based on their structural features. All coronins possess a conserved basic N‐terminal motif and three to ten WD repeats clustered in one or two core domains. Dictyostelium and mammalian coronins are important regulators of the actin cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink both actin and microtubules. Apart from that, several coronins have been shown to be involved (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  18
    Multifaceted targeted protein degradation systems for different cellular compartments.Cornelia E. Zorca, Armaan Fallahi, Sophie Luo & Mohamed A. Eldeeb - 2022 - Bioessays 44 (6):2200008.
    Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  13
    Protein kinase cascades activated by stress and inflammatory cytokines.John M. Kyriakis & Joseph Avruch - 1996 - Bioessays 18 (7):567-577.
    Signal transduction pathways constructed around a core module of three consecutive protein kinases, the most distal being a member of the extracellular signal‐regulated kinase (ERK) family, are ubiquitous among eukaryotes. Recent work has defined two cascades activated preferentially by the inflammatory cytokines TNF‐α and IL‐1‐β, as well as by a wide variety of cellular stresses such as UV and ionizing radiation, hyperosmolarity, heat stress, oxidative stress, etc. One pathway converges on the ERK subfamily known as the ‘stress activated’ (...) kinases (SAPKs, also termed Jun N‐terminal kinases, JNKs), whereas the second pathway recruits the p38 kinases. Upstream inputs are diverse, and include small GTPases (primarily Rac and Cdc42; secondarily Ras) acting through mammalian homologs of the yeast Ste20 kinase, other kinase subfamilies (e.g. GC kinase) and ceramide, a putative second messenger for certain TNF‐α actions. These two cascades signal cell cycle delay, cellular repair or apoptosis in most cells, as well as activation of immune and reticuloendothelial cells. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31.  13
    G proteins, chemosensory perception, and the C. elegans genome project: An attractive story.Thomas M. Wilkie - 1999 - Bioessays 21 (9):713-717.
    Heterotrimeric G proteins, consisting of α, β, and γ subunits, couple ligand-bound seven transmembrane domain receptors to the regulation of effector proteins and production of intracellular second messengers. G protein signaling mediates the perception of environmental cues in all higher eukaryotic organisms, including yeast, Dictyostelium, plants, and animals. The nematode Caenorhabditis elegans is the first animal to have complete descriptions of its cellular anatomy, cell lineage, neuronal wiring diagram, and genomic sequence. In a recent paper, Jansen et al.(1) used (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  61
    Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells.Richard N. Day & Michael W. Davidson - 2012 - Bioessays 34 (5):341-350.
    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live‐cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33.  5
    G proteins, chemosensory perception, and the C. elegans genome project: An attractive story.H. Georg Kuhn & Clive N. Svendsen - 1999 - Bioessays 21 (9):713-717.
    Heterotrimeric G proteins, consisting of α, β, and γ subunits, couple ligand-bound seven transmembrane domain receptors to the regulation of effector proteins and production of intracellular second messengers. G protein signaling mediates the perception of environmental cues in all higher eukaryotic organisms, including yeast, Dictyostelium, plants, and animals. The nematode Caenorhabditis elegans is the first animal to have complete descriptions of its cellular anatomy, cell lineage, neuronal wiring diagram, and genomic sequence. In a recent paper, Jansen et al.(1) used (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  23
    Analyzing proteinprotein interactions in cell membranes.Anja Nohe & Nils O. Petersen - 2004 - Bioessays 26 (2):196-203.
    Interactions among membrane proteins regulate numerous cellular processes, including cell growth, cell differentiation and apoptosis. We need to understand which proteins interact, where they interact and to which extent they interact. This article describes a set of novel approaches to measure, on the surface of living cells, the number of clusters of proteins, the number of proteins per cluster, the number of clusters or membrane domains that contain pairs of interacting proteins and the fraction of one protein species that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  25
    Protein lateral mobility as a reflection of membrane microstructure.Fen Zhang, Greta M. Lee & Ken Jacobson - 1993 - Bioessays 15 (9):579-588.
    The lateral mobility of membrane lipids and proteins is presumed to play an important functional role in biomembranes. Photobleaching studies have shown that many proteins in the plasma membrane have diffusion coefficients at least an order of magnitude lower than those obtained when the same proteins are reconstituted in artificial bilayer membranes. Depending on the protein, it has been shown that either the cytoplasmic domain or the ectodomain is the key determinant of its lateral mobility. Single particle tracking microscopy, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  12
    Protein splicing: Excision of intervening sequences at the protein level.Antony A. Cooper & To M. H. Stevens - 1993 - Bioessays 15 (10):667-674.
    Protein splicing is an extraordinary post‐translational reaction that removes an intact central “spacer” domain (Sp) from precursor proteins (N‐Sp‐C) while splicing together the N‐ and C‐domains of the precursor, via a peptide bond, to produce a new protein (N‐C). All of the available data on protein splicing fit a model in which these intervening sequences excise at the protein level via a self‐splicing mechanism. Several proteins have recently been discovered that undergo protein splicing, and in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  23
    Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity.Sarah K. Deng, Huan Chen & Lorraine S. Symington - 2015 - Bioessays 37 (3):305-313.
    Replication protein A (RPA) is the main eukaryotic single‐stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of nucleases, and directly interacts with other DNA processing proteins. Here, we discuss recent results supporting the idea that one function of RPA is to prevent annealing between short repeats that can lead to chromosome rearrangements by (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38.  49
    Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.Ronald E. Hileman, Jonathan R. Fromm, John M. Weiler & Robert J. Linhardt - 1998 - Bioessays 20 (2):156-167.
    Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein‐GAG binding have not been well‐characterised. Ionic interactions are important in promoting protein‐GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein‐GAG (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  13
    Protein Phosphorylation Dynamics: Unexplored Because of Current Methodological Limitations.Alain Robichon - 2020 - Bioessays 42 (4):1900149.
    The study of intrinsic phosphorylation dynamics and kinetics in the context of complex protein architecture in vivo has been challenging: Method limitations have prevented significant advances in the understanding of the highly variable turnover of phosphate groups, synergy, and cooperativity between P‐sites. However, over the last decade, powerful analytical technologies have been developed to determine the full catalog of the phosphoproteome for many species. The curated databases of phospho sites found by mass spectrometry analysis and the computationally predicted sites (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. TGF-beta signaling proteins and the Protein Ontology.Arighi Cecilia, Liu Hongfang, Natale Darren, Barker Winona, Drabkin Harold, Blake Judith, Barry Smith & Wu Cathy - 2009 - BMC Bioinformatics 10 (Suppl 5):S3.
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  27
    Rnd proteins: Multifunctional regulators of the cytoskeleton and cell cycle progression.Philippe Riou, Priam Villalonga & Anne J. Ridley - 2010 - Bioessays 32 (11):986-992.
    Rnd3/RhoE has two distinct functions, regulating the actin cytoskeleton and cell proliferation. This might explain why its expression is often altered in cancer and by multiple stimuli during development and disease. Rnd3 together with its relatives Rnd1 and Rnd2 are atypical members of the Rho GTPase family in that they do not hydrolyse GTP. Rnd3 and Rnd1 both antagonise RhoA/ROCK‐mediated actomyosin contractility, thereby regulating cell migration, smooth muscle contractility and neurite extension. In addition, Rnd3 has been shown to have a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  21
    Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.Sukhbir S. Dhamrait, Cecilia Maubaret, Ulrik Pedersen-Bjergaard, David J. Brull, Peter Gohlke, John R. Payne, Michael World, Birger Thorsteinsson, Steve E. Humphries & Hugh E. Montgomery - 2016 - Bioessays 38 (S1):107-118.
    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  20
    Protein tyrosine kinases as new potential targets against human schistosomiasis.Colette Dissous, Arnaud Ahier & Naji Khayath - 2007 - Bioessays 29 (12):1281-1288.
    In spite of the numerous efforts made to control their transmission, parasite schistosomes still represent a serious public health concern and a major economic problem in many developing countries. Praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis and the only one that is available for mass chemotherapy. However, its widespread use and its inefficacy on juvenile parasites raise fears that schistosomes will develop drug resistance, and make the development of alternative drugs highly desirable. Protein tyrosine (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  34
    PRDM proteins: Important players in differentiation and disease.Cathrine K. Fog, Giorgio G. Galli & Anders H. Lund - 2012 - Bioessays 34 (1):50-60.
    The PRDM family has recently spawned considerable interest as it has been implicated in fundamental aspects of cellular differentiation and exhibits expanding ties to human diseases. The PRDMs belong to the SET domain family of histone methyltransferases, however, enzymatic activity has been determined for only few PRDMs suggesting that they act by recruiting co‐factors or, more speculatively, confer methylation of non‐histone targets. Several PRDM family members are deregulated in human diseases, most prominently in hematological malignancies and solid cancers, where they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  20
    Protein synthesis in eukaryotic organisms: New insights into the function of translation initiation factor EIF‐3.Ernest M. Hannig - 1995 - Bioessays 17 (11):915-919.
    The pathway for initiation of protein synthesis in eukaryotic cells has been defined and refined over the last 25 years using purified components and in vitro reconstituted systems. More recently, powerful genetic analysis in yeast has proved useful in unraveling aspects of translation inherently more difficult to address by strictly biochemical approaches. One area in particular is the functional analysis of multi‐subunit protein factors, termed eukaryotic initiation factors (eIFs), that play an essential role in translation initiation. eIF‐3, the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  39
    TssA: The cap protein of the Type VI secretion system tail.Abdelrahim Zoued, Eric Durand, Yoann G. Santin, Laure Journet, Alain Roussel, Christian Cambillau & Eric Cascales - 2017 - Bioessays 39 (10):1600262.
    The Type VI secretion system is a multiprotein and mosaic apparatus that delivers protein effectors into prokaryotic or eukaryotic cells. Recent data on the enteroaggregative Escherichia coli T6SS have provided evidence that the TssA protein is a key component during T6SS biogenesis. The T6SS comprises a trans-envelope complex that docks the baseplate, a cytoplasmic complex that represents the assembly platform for the tail. The T6SS tail is structurally, evolutionarily and functionally similar to the contractile tails of bacteriophages. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  17
    Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects.Dmitri Graifer & Galina Karpova - 2020 - Bioessays 42 (12):2000124.
    The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF‐kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  24
    Driving Protein Conformational Cycles in Physiology and Disease: “Frustrated” Amino Acid Interaction Networks Define Dynamic Energy Landscapes.Rebecca N. D'Amico, Alec M. Murray & David D. Boehr - 2020 - Bioessays 42 (9):2000092.
    A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or “conformational cycle,” required for function is proposed. It is suggested that the free‐energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free‐energy landscape. Some network connections are consistent in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  16
    NIPSNAP protein family emerges as a sensor of mitochondrial health.Esmat Fathi, Jay M. Yarbro & Ramin Homayouni - 2021 - Bioessays 43 (6):2100014.
    Since their discovery over two decades ago, the molecular and cellular functions of the NIPSNAP family of proteins (NIPSNAPs) have remained elusive until recently. NIPSNAPs interact with a variety of mitochondrial and cytoplasmic proteins. They have been implicated in multiple cellular processes and associated with different physiologic and pathologic conditions, including pain transmission, Parkinson's disease, and cancer. Recent evidence demonstrated a direct role for NIPSNAP1 and NIPSNAP2 proteins in regulation of mitophagy, a process that is critical for cellular health and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  21
    Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52.Theo Rein - 2020 - Bioessays 42 (7):1900250.
    Peptidylprolyl‐isomerases (PPIases) comprise of the protein families of FK506 binding proteins (FKBPs), cyclophilins, and parvulins. Their common feature is their ability to expedite the transition of peptidylprolyl bonds between the cis and the trans conformation. Thus, it seemed highly plausible that PPIase enzymatic activity is crucial for protein folding. However, this has been difficult to prove over the decades since their discovery. In parallel, more and more studies have discovered scaffolding functions of PPIases. This essay discusses the hypothesis (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 990