Results for ' Machine Learning in Cybersecurity'

978 found
Order:
  1. Ethical principles shaping values-based cybersecurity decision-making.Joseph Fenech, Deborah Richards & Paul Formosa - 2024 - Computers and Society 140 (103795).
    The human factor in information systems is a large vulnerability when implementing cybersecurity, and many approaches, including technical and policy driven solutions, seek to mitigate this vulnerability. Decisions to apply technical or policy solutions must consider how an individual’s values and moral stance influence their responses to these implementations. Our research aims to evaluate how individuals prioritise different ethical principles when making cybersecurity sensitive decisions and how much perceived choice they have when doing so. Further, we sought to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. Egalitarian Machine Learning.Clinton Castro, David O’Brien & Ben Schwan - 2023 - Res Publica 29 (2):237–264.
    Prediction-based decisions, which are often made by utilizing the tools of machine learning, influence nearly all facets of modern life. Ethical concerns about this widespread practice have given rise to the field of fair machine learning and a number of fairness measures, mathematically precise definitions of fairness that purport to determine whether a given prediction-based decision system is fair. Following Reuben Binns (2017), we take ‘fairness’ in this context to be a placeholder for a variety of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  16
    Friction, snake oil, and weird countries: Cybersecurity systems could deepen global inequality through regional blocking.Jenna Burrell & Anne Jonas - 2019 - Big Data and Society 6 (1).
    In this moment of rising nationalism worldwide, governments, civil society groups, transnational companies, and web users all complain of increasing regional fragmentation online. While prior work in this area has primarily focused on issues of government censorship and regulatory compliance, we use an inductive and qualitative approach to examine targeted blocking by corporate entities of entire regions motivated by concerns about fraud, abuse, and theft. Through participant-observation at relevant events and intensive interviews with experts, we document the quest by professionals (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  4. Explainable machine learning practices: opening another black box for reliable medical AI.Emanuele Ratti & Mark Graves - 2022 - AI and Ethics:1-14.
    In the past few years, machine learning (ML) tools have been implemented with success in the medical context. However, several practitioners have raised concerns about the lack of transparency—at the algorithmic level—of many of these tools; and solutions from the field of explainable AI (XAI) have been seen as a way to open the ‘black box’ and make the tools more trustworthy. Recently, Alex London has argued that in the medical context we do not need machine (...) tools to be interpretable at the algorithmic level to make them trustworthy, as long as they meet some strict empirical desiderata. In this paper, we analyse and develop London’s position. In particular, we make two claims. First, we claim that London’s solution to the problem of trust can potentially address another problem, which is how to evaluate the reliability of ML tools in medicine for regulatory purposes. Second, we claim that to deal with this problem, we need to develop London’s views by shifting the focus from the opacity of algorithmic details to the opacity of the way in which ML tools are trained and built. We claim that to regulate AI tools and evaluate their reliability, agencies need an explanation of how ML tools have been built, which requires documenting and justifying the technical choices that practitioners have made in designing such tools. This is because different algorithmic designs may lead to different outcomes, and to the realization of different purposes. However, given that technical choices underlying algorithmic design are shaped by value-laden considerations, opening the black box of the design process means also making transparent and motivating (technical and ethical) values and preferences behind such choices. Using tools from philosophy of technology and philosophy of science, we elaborate a framework showing how an explanation of the training processes of ML tools in medicine should look like. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  5.  98
    Machine Learning, Functions and Goals.Patrick Butlin - 2022 - Croatian Journal of Philosophy 22 (66):351-370.
    Machine learning researchers distinguish between reinforcement learning and supervised learning and refer to reinforcement learning systems as “agents”. This paper vindicates the claim that systems trained by reinforcement learning are agents while those trained by supervised learning are not. Systems of both kinds satisfy Dretske’s criteria for agency, because they both learn to produce outputs selectively in response to inputs. However, reinforcement learning is sensitive to the instrumental value of outputs, giving rise (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  6.  52
    Machine learning of higher-order programs.Ganesh Baliga, John Case, Sanjay Jain & Mandayam Suraj - 1994 - Journal of Symbolic Logic 59 (2):486-500.
    A generator program for a computable function (by definition) generates an infinite sequence of programs all but finitely many of which compute that function. Machine learning of generator programs for computable functions is studied. To motivate these studies partially, it is shown that, in some cases, interesting global properties for computable functions can be proved from suitable generator programs which cannot be proved from any ordinary programs for them. The power (for variants of various learning criteria from (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  7.  18
    Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State.Arkan Al-Zubaidi, Alfred Mertins, Marcus Heldmann, Kamila Jauch-Chara & Thomas F. Münte - 2019 - Frontiers in Human Neuroscience 13.
  8. Machine Learning, Misinformation, and Citizen Science.Adrian K. Yee - 2023 - European Journal for Philosophy of Science 13 (56):1-24.
    Current methods of operationalizing concepts of misinformation in machine learning are often problematic given idiosyncrasies in their success conditions compared to other models employed in the natural and social sciences. The intrinsic value-ladenness of misinformation and the dynamic relationship between citizens' and social scientists' concepts of misinformation jointly suggest that both the construct legitimacy and the construct validity of these models needs to be assessed via more democratic criteria than has previously been recognized.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9. (1 other version)Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems.Owen C. King - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich, On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 265-282.
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Machine learning, inductive reasoning, and reliability of generalisations.Petr Spelda - 2020 - AI and Society 35 (1):29-37.
    The present paper shows how statistical learning theory and machine learning models can be used to enhance understanding of AI-related epistemological issues regarding inductive reasoning and reliability of generalisations. Towards this aim, the paper proceeds as follows. First, it expounds Price’s dual image of representation in terms of the notions of e-representations and i-representations that constitute subject naturalism. For Price, this is not a strictly anti-representationalist position but rather a dualist one (e- and i-representations). Second, the paper (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  56
    Machine Learning to Differentiate Between Positive and Negative Emotions Using Pupil Diameter.Areej Babiker, Ibrahima Faye, Kristin Prehn & Aamir Malik - 2015 - Frontiers in Psychology 6.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12. Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   67 citations  
  13. Introduction: Machine learning as philosophy of science.Kevin B. Korb - 2004 - Minds and Machines 14 (4):433-440.
    I consider three aspects in which machine learning and philosophy of science can illuminate each other: methodology, inductive simplicity and theoretical terms. I examine the relations between the two subjects and conclude by claiming these relations to be very close.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  14.  20
    Machine Learning.Paul Thagard - 1998 - In George Graham & William Bechtel, A Companion to Cognitive Science. Blackwell. pp. 245–249.
    Machine learning is the study of algorithms that enable computers to improve their performance and increase their knowledge base. Research in machine learning has taken place since the beginning of artificial intelligence in the mid‐1950s. The first notable success was Arthur Samuel's program that learned to play checkers well enough to beat skilled humans. The program estimated the best move in a situation by using a mathematical function whose sixteen parameters describe board positions, and it improved (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  97
    Machine learning by imitating human learning.Chang Kuo-Chin, Hong Tzung-Pei & Tseng Shian-Shyong - 1996 - Minds and Machines 6 (2):203-228.
    Learning general concepts in imperfect environments is difficult since training instances often include noisy data, inconclusive data, incomplete data, unknown attributes, unknown attribute values and other barriers to effective learning. It is well known that people can learn effectively in imperfect environments, and can manage to process very large amounts of data. Imitating human learning behavior therefore provides a useful model for machine learning in real-world applications. This paper proposes a new, more effective way to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  16. Using machine learning to predict decisions of the European Court of Human Rights.Masha Medvedeva, Michel Vols & Martijn Wieling - 2020 - Artificial Intelligence and Law 28 (2):237-266.
    When courts started publishing judgements, big data analysis within the legal domain became possible. By taking data from the European Court of Human Rights as an example, we investigate how natural language processing tools can be used to analyse texts of the court proceedings in order to automatically predict judicial decisions. With an average accuracy of 75% in predicting the violation of 9 articles of the European Convention on Human Rights our approach highlights the potential of machine learning (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  17.  90
    Machine Learning-Based Analysis of Digital Movement Assessment and ExerGame Scores for Parkinson's Disease Severity Estimation.Dunia J. Mahboobeh, Sofia B. Dias, Ahsan H. Khandoker & Leontios J. Hadjileontiadis - 2022 - Frontiers in Psychology 13:857249.
    Neurodegenerative Parkinson's Disease (PD) is one of the common incurable diseases among the elderly. Clinical assessments are characterized as standardized means for PD diagnosis. However, relying on medical evaluation of a patient's status can be subjective to physicians' experience, making the assessment process susceptible to human errors. The use of ICT-based tools for capturing the status of patients with PD can provide more objective and quantitative metrics. In this vein, the Personalized Serious Game Suite (PGS) and intelligent Motor Assessment Tests (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  45
    Machine learning and power relations.Jonne Maas - forthcoming - AI and Society.
    There has been an increased focus within the AI ethics literature on questions of power, reflected in the ideal of accountability supported by many Responsible AI guidelines. While this recent debate points towards the power asymmetry between those who shape AI systems and those affected by them, the literature lacks normative grounding and misses conceptual clarity on how these power dynamics take shape. In this paper, I develop a workable conceptualization of said power dynamics according to Cristiano Castelfranchi’s conceptual framework (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  19. Machine Learning and the Future of Scientific Explanation.Florian J. Boge & Michael Poznic - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (1):171-176.
    The workshop “Machine Learning: Prediction Without Explanation?” brought together philosophers of science and scholars from various fields who study and employ Machine Learning (ML) techniques, in order to discuss the changing face of science in the light of ML's constantly growing use. One major focus of the workshop was on the impact of ML on the concept and value of scientific explanation. One may speculate whether ML’s increased use in science exemplifies a paradigmatic turn towards mere (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  20.  47
    Doubt and the Algorithm: On the Partial Accounts of Machine Learning.Louise Amoore - 2019 - Theory, Culture and Society 36 (6):147-169.
    In a 1955 lecture the physicist Richard Feynman reflected on the place of doubt within scientific practice. ‘Permit us to question, to doubt, to not be sure’, proposed Feynman, ‘it is possible to live and not to know’. In our contemporary world, the science of machine learning algorithms appears to transform the relations between science, knowledge and doubt, to make even the most doubtful event amenable to action. What might it mean to ‘leave room for doubt’ or ‘to (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  21.  7
    Machine Learning, Synthetic Data, and the Politics of Difference.Benjamin N. Jacobsen - forthcoming - Theory, Culture and Society.
    What is the relationship between ideas of sameness and difference for machine learning and AI? Algorithms are often understood to participate in the continual displacement of the different and heterogeneous in society in favour of sameness, of that which is socio-politically similar and proximate. In contrast to this prevalent emphasis on sameness, however, this paper argues that there is a nascent heterophilic logic underpinning the intersection of synthetic data and machine learning, a move towards actively generating (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22. Machines Learn Better with Better Data Ontology: Lessons from Philosophy of Induction and Machine Learning Practice.Dan Li - 2023 - Minds and Machines 33 (3):429-450.
    As scientists start to adopt machine learning (ML) as one research tool, the security of ML and the knowledge generated become a concern. In this paper, I explain how supervised ML can be improved with better data ontology, or the way we make categories and turn information into data. More specifically, we should design data ontology in such a way that is consistent with the knowledge that we have about the target phenomenon so that such ontology can help (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  61
    Machine learning and essentialism.Kristina Šekrst & Sandro Skansi - 2022 - Philosophical Problems in Science 73:171-196.
    Machine learning and essentialism have been connected in the past by various researchers, in order to state that the main paradigm in machine learning processes is equivalent to choosing the “essential” attributes for the machine to search for. Our goal in this paper is to show that there are connections between machine learning and essentialism, but only for some kinds of machine learning, and often not including deep learning methods. Similarity-based (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Machine learning theory and practice as a source of insight into universal grammar.Shalom Lappin - unknown
    In this paper, we explore the possibility that machine learning approaches to naturallanguage processing being developed in engineering-oriented computational linguistics may be able to provide specific scientific insights into the nature of human language. We argue that, in principle, machine learning results could inform basic debates about language, in one area at least, and that in practice, existing results may offer initial tentative support for this prospect. Further, results from computational learning theory can inform arguments (...)
     
    Export citation  
     
    Bookmark   10 citations  
  25.  5
    Machine learning, healthcare resource allocation, and patient consent.Jamie Webb - 2024 - The New Bioethics 30 (3):206-227.
    The impact of machine learning in healthcare on patient informed consent is now the subject of significant inquiry in bioethics. However, the topic has predominantly been considered in the context of black box diagnostic or treatment recommendation algorithms. The impact of machine learning involved in healthcare resource allocation on patient consent remains undertheorized. This paper will establish where patient consent is relevant in healthcare resource allocation, before exploring the impact on informed consent from the introduction of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  60
    On Machine Learning and the Replacement of Human Labour: Anti-Cartesianism versus Babbage’s path.Felipe Tobar & Rodrigo González - 2022 - AI and Society 37 (4):1459-1471.
    This paper addresses two methodological paths in Artificial Intelligence: the paths of Babbage and anti-Cartesianism. While those researchers who have followed the latter have attempted to reverse the Cartesian dictum according to which machines cannot think in principle, Babbage’s path, which has been partially neglected, implies that the replacement of humans—and not the creation of minds—should provide the foundation of AI. In view of the examined paths, the claim that we support here is this: in line with Babbage, AI researchers (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27.  5
    Machine learning, healthcare resource allocation, and patient consent.Jamie Webb - 2024 - The New Bioethics 30 (3):206-227.
    The impact of machine learning in healthcare on patient informed consent is now the subject of significant inquiry in bioethics. However, the topic has predominantly been considered in the context of black box diagnostic or treatment recommendation algorithms. The impact of machine learning involved in healthcare resource allocation on patient consent remains undertheorized. This paper will establish where patient consent is relevant in healthcare resource allocation, before exploring the impact on informed consent from the introduction of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  25
    Machine learning for the history of ideas.Simon Brausch & Gerd Graßhoff - unknown
    The information technological progress that has been achieved over the last decades has also given the humanities the opportunity to expand their methodological toolbox. This paper explores how recent advancements in natural language processing may be used for research in the history of ideas so as to overcome traditional scholarship's inevitably selective approach to historical sources. By employing two machine learning techniques whose potential for the analysis of conceptual continuities and innovations has never been considered before, we aim (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. Explaining Machine Learning Decisions.John Zerilli - 2022 - Philosophy of Science 89 (1):1-19.
    The operations of deep networks are widely acknowledged to be inscrutable. The growing field of Explainable AI has emerged in direct response to this problem. However, owing to the nature of the opacity in question, XAI has been forced to prioritise interpretability at the expense of completeness, and even realism, so that its explanations are frequently interpretable without being underpinned by more comprehensive explanations faithful to the way a network computes its predictions. While this has been taken to be a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  30. Machine learning theory and practice as a source of insight into universal grammar.Stuartm Shieber - unknown
    In this paper, we explore the possibility that machine learning approaches to naturallanguage processing being developed in engineering-oriented computational linguistics may be able to provide specific scientific insights into the nature of human language. We argue that, in principle, machine learning results could inform basic debates about language, in one area at least, and that in practice, existing results may offer initial tentative support for this prospect. Further, results from computational learning theory can inform arguments (...)
     
    Export citation  
     
    Bookmark   7 citations  
  31. Fair machine learning under partial compliance.Jessica Dai, Sina Fazelpour & Zachary Lipton - 2021 - In Jessica Dai, Sina Fazelpour & Zachary Lipton, Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. pp. 55–65.
    Typically, fair machine learning research focuses on a single decision maker and assumes that the underlying population is stationary. However, many of the critical domains motivating this work are characterized by competitive marketplaces with many decision makers. Realistically, we might expect only a subset of them to adopt any non-compulsory fairness-conscious policy, a situation that political philosophers call partial compliance. This possibility raises important questions: how does partial compliance and the consequent strategic behavior of decision subjects affect the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  26
    A machine learning approach to detecting fraudulent job types.Marcel Naudé, Kolawole John Adebayo & Rohan Nanda - 2023 - AI and Society 38 (2):1013-1024.
    Job seekers find themselves increasingly duped and misled by fraudulent job advertisements, posing a threat to their privacy, security and well-being. There is a clear need for solutions that can protect innocent job seekers. Existing approaches to detecting fraudulent jobs do not scale well, function like a black-box, and lack interpretability, which is essential to guide applicants’ decision-making. Moreover, commonly used lexical features may be insufficient as the representation does not capture contextual semantics of the underlying document. Hence, this paper (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  30
    Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality.Mariano Alcañiz Raya, Irene Alice Chicchi Giglioli, Javier Marín-Morales, Juan L. Higuera-Trujillo, Elena Olmos, Maria E. Minissi, Gonzalo Teruel Garcia, Marian Sirera & Luis Abad - 2020 - Frontiers in Human Neuroscience 14.
  34.  23
    Bias, machine learning, and conceptual engineering.Rachel Etta Rudolph, Elay Shech & Michael Tamir - forthcoming - Philosophical Studies:1-29.
    Large language models (LLMs) such as OpenAI’s ChatGPT reflect, and can potentially perpetuate, social biases in language use. Conceptual engineering aims to revise our concepts to eliminate such bias. We show how machine learning and conceptual engineering can be fruitfully brought together to offer new insights to both conceptual engineers and LLM designers. Specifically, we suggest that LLMs can be used to detect and expose bias in the prototypes associated with concepts, and that LLM de-biasing can serve conceptual (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35.  18
    Machine Learning to Assess Relatedness: The Advantage of Using Firm-Level Data.Giambattista Albora & Andrea Zaccaria - 2022 - Complexity 2022:1-12.
    The relatedness between a country or a firm and a product is a measure of the feasibility of that economic activity. As such, it is a driver for investments at a private and institutional level. Traditionally, relatedness is measured using networks derived by country-level co-occurrences of product pairs, that is counting how many countries export both. In this work, we compare networks and machine learning algorithms trained not only on country-level data, but also on firms, which is something (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  55
    Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework.Xin Xu, Feng Xiong & Zhe An - 2022 - Journal of Business Ethics 186 (1):137-158.
    This study focuses on a traditional business ethics question and aims to use advanced techniques to improve the performance of corporate fraud prediction. Based on the GONE framework, we adopt the machine learning model to predict the occurrence of corporate fraud in China. We first identify a comprehensive set of fraud-related variables and organize them into each category (i.e., Greed, Opportunity, Need, and Exposure) of the GONE framework. Among the six machine learning models tested, the Random (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  5
    Abstaining machine learning: philosophical considerations.Daniela Schuster - forthcoming - AI and Society:1-21.
    This paper establishes a connection between the fields of machine learning (ML) and philosophy concerning the phenomenon of behaving neutrally. It investigates a specific class of ML systems capable of delivering a neutral response to a given task, referred to as abstaining machine learning systems, that has not yet been studied from a philosophical perspective. The paper introduces and explains various abstaining machine learning systems, and categorizes them into distinct types. An examination is conducted (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38. Machine Learning and the Cognitive Basis of Natural Language.Shalom Lappin - unknown
    Machine learning and statistical methods have yielded impressive results in a wide variety of natural language processing tasks. These advances have generally been regarded as engineering achievements. In fact it is possible to argue that the success of machine learning methods is significant for our understanding of the cognitive basis of language acquisition and processing. Recent work in unsupervised grammar induction is particularly relevant to this issue. It suggests that knowledge of language can be achieved through (...)
     
    Export citation  
     
    Bookmark   2 citations  
  39. Fast machine-learning online optimization of ultra-cold-atom experiments.P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian, M. A. Sooriyabandara, G. D. McDonald, K. S. Hardman, C. D. Quinlivan, P. Manju, C. C. N. Kuhn, I. R. Petersen, A. N. Luiten, J. J. Hope, N. P. Robins & M. R. Hush - 2016 - Sci. Rep 6:25890.
    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates. BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ’learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical (...)
    No categories
     
    Export citation  
     
    Bookmark   2 citations  
  40.  24
    Machine Learning Against Terrorism: How Big Data Collection and Analysis Influences the Privacy-Security Dilemma.H. M. Verhelst, A. W. Stannat & G. Mecacci - 2020 - Science and Engineering Ethics 26 (6):2975-2984.
    Rapid advancements in machine learning techniques allow mass surveillance to be applied on larger scales and utilize more and more personal data. These developments demand reconsideration of the privacy-security dilemma, which describes the tradeoffs between national security interests and individual privacy concerns. By investigating mass surveillance techniques that use bulk data collection and machine learning algorithms, we show why these methods are unlikely to pinpoint terrorists in order to prevent attacks. The diverse characteristics of terrorist attacks—especially (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Inductive logic, verisimilitude, and machine learning.Ilkka Niiniluoto - 2005 - In Petr Hájek, Luis Valdés-Villanueva & Dag Westerståhl, Logic, Methodology, and Philosophy of Science. College Publications. pp. 295/314.
    This paper starts by summarizing work that philosophers have done in the fields of inductive logic since 1950s and truth approximation since 1970s. It then proceeds to interpret and critically evaluate the studies on machine learning within artificial intelligence since 1980s. Parallels are drawn between identifiability results within formal learning theory and convergence results within Hintikka’s inductive logic. Another comparison is made between the PAC-learning of concepts and the notion of probable approximate truth.
     
    Export citation  
     
    Bookmark   3 citations  
  42. Humanistic interpretation and machine learning.Juho Pääkkönen & Petri Ylikoski - 2021 - Synthese 199:1461–1497.
    This paper investigates how unsupervised machine learning methods might make hermeneutic interpretive text analysis more objective in the social sciences. Through a close examination of the uses of topic modeling—a popular unsupervised approach in the social sciences—it argues that the primary way in which unsupervised learning supports interpretation is by allowing interpreters to discover unanticipated information in larger and more diverse corpora and by improving the transparency of the interpretive process. This view highlights that unsupervised modeling does (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  43.  33
    Machine learning for electric energy consumption forecasting: Application to the Paraguayan system.Félix Morales-Mareco, Miguel García-Torres, Federico Divina, Diego H. Stalder & Carlos Sauer - 2024 - Logic Journal of the IGPL 32 (6):1048-1072.
    In this paper we address the problem of short-term electric energy prediction using a time series forecasting approach applied to data generated by a Paraguayan electricity distribution provider. The dataset used in this work contains data collected over a three-year period. This is the first time that these data have been used; therefore, a preprocessing phase of the data was also performed. In particular, we propose a comparative study of various machine learning and statistical strategies with the objective (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  12
    Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?Ruijie Sun, Feng Liu, Yinan Li, Rongping Wang & Jing Luo - 2024 - Journal of Business Ethics 195 (1):151-166.
    Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  43
    Machine learning and human learning: a socio-cultural and -material perspective on their relationship and the implications for researching working and learning.David Guile & Jelena Popov - forthcoming - AI and Society:1-14.
    The paper adopts an inter-theoretical socio-cultural and -material perspective on the relationship between human + machine learning to propose a new way to investigate the human + machine assistive assemblages emerging in professional work (e.g. medicine, architecture, design and engineering). Its starting point is Hutchins’s (1995a) concept of ‘distributed cognition’ and his argument that his concept of ‘cultural ecosystems’ constitutes a unit of analysis to investigate collective human + machine working and learning (Hutchins, Philos Psychol (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  11
    Machine learning for mental health diagnosis: tackling contributory injustice and epistemic oppression.Giorgia Pozzi & Michiel De Proost - 2024 - Journal of Medical Ethics 50 (9):596-597.
    Introduction In their contribution, Ugar and Malele 1 shed light on an often overlooked but crucial aspect of the ethical development of machine learning (ML) systems to support the diagnosis of mental health disorders. The authors restrain their focus on pointing to the danger of misdiagnosing mental health pathologies that do not qualify as such within sub-Saharan African communities and argue for the need to include population-specific values in these technologies’ design. However, an analysis of the nature of (...))
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. Machine learning: A structuralist discipline?Christophe Bruchansky - 2019 - AI and Society 34 (4):931-938.
    Advances in machine learning and natural language processing are revolutionizing the way we live, work, and think. As for any science, they are based on assumptions about what the world is, and how humans interact with it. In this paper, I discuss what is potentially one of these assumptions: structuralism, which states that all cultures share a hidden structure. I illustrate this assumption with political footprints: a machine-learning technique using pre-trained word vectors for political discourse analysis. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  17
    More Data, Please: Machine Learning to Advance the Multidisciplinary Science of Human Sociochemistry.Jasper H. B. de Groot, Ilja Croijmans & Monique A. M. Smeets - 2020 - Frontiers in Psychology 11.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49. Machine learning and the foundations of inductive inference.Francesco Bergadano - 1993 - Minds and Machines 3 (1):31-51.
    The problem of valid induction could be stated as follows: are we justified in accepting a given hypothesis on the basis of observations that frequently confirm it? The present paper argues that this question is relevant for the understanding of Machine Learning, but insufficient. Recent research in inductive reasoning has prompted another, more fundamental question: there is not just one given rule to be tested, there are a large number of possible rules, and many of these are somehow (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  32
    Machine learning and its impact on psychiatric nosology: Findings from a qualitative study among German and Swiss experts.Georg Starke, Bernice Simone Elger & Eva De Clercq - 2023 - Philosophy and the Mind Sciences 4.
    The increasing integration of Machine Learning (ML) techniques into clinical care, driven in particular by Deep Learning (DL) using Artificial Neural Nets (ANNs), promises to reshape medical practice on various levels and across multiple medical fields. Much recent literature examines the ethical consequences of employing ML within medical and psychiatric practice but the potential impact on psychiatric diagnostic systems has so far not been well-developed. In this article, we aim to explore the challenges that arise from the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 978